首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomes prepared from murine lymphosarcoma cells were phosphorylated by a cyclic AMP-independent protein kinase designated H4P kinase. H4P kinase was isolated as an inactive enzyme which was activated by Mg2+-ATP and an endogenous converting enzyme. In the absence of preactivation by Mg2+-ATP and an endogenous converting enzyme, H4P kinase catalyzed phosphorylation of 80, 60, and 40 S ribosomal subunits at a low rate. After activation, the H4P kinase selectively catalyzed phosphorylation of the S 6 protein in the 40 S ribosomal subunit. Under the assay conditions selected, at least 90% of the [32P]phosphate transferred to the 40 S ribosomal preparation was incorporated into S 6. The apparent Km for 40 S subunits phosphorylated by H4P kinase was 7.2 microM. The calculated Vmax was 50 nmol of Pi transferred per min/mg. Exhaustive phosphorylation of 40 S subunits resulted in incorporation of 3 mol of phosphate/mol of S 6, in contrast to results reported previously which indicated 0.3 mol of phosphate was transferred by a similar enzyme from reticulocyte (Del Grande, R. W., and Traugh, J. A. (1982) Eur. J. Biochem. 123, 421-428). These data are consistent with a potential role for H4P kinase in the insulin-mediated phosphorylation of S 6 at multiple sites.  相似文献   

2.
Phosphorylase kinase was found to be activated and phosphorylated at 10mM Mg2+ by the cAMP-dependent protein kinase-catalyzed reaction ot much higher levels than observed previously when reactions were carried out in 1 to 2 mM Mg2+ (Cohen, P. (1973) Eur. J. Biochem. 34, 1; Hayakawa, T., Perkin, J.P., and Krebs, E.G. (1973) Biochemistry 12, 574). That the reaction at 10 mM Mg2+ is protein kinase-catalyzed is supported by several observations: (a) the reaction is facilitated by the addition of protein kinase; (b) the reaction depends on cAMP when protein kinase holoenzyme is uded; (c) the reaction is not inhibited by 1 mM ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetate which is known to inhibit autoactivation and autophosphorylation of phosphorylase kinase; and (d) the protein inhibitor of protein kinase inhibits this reaction. The phosphorylation and activation of phosphorylase kinase seem to occur in two phases. At low Mg2+ only the first phase is manifested and involves the incorporation of 2 mol of phosphate, 1 mol into each of Subunits A and B. At high Mg2+ additional sites are phosphorylated almost exclusively on Subunit A, with phosphate incorporation approaching the final level of 7 to 9 mol. Enzyme activity at high Mg2+ is 2 to 3 times higher than that observed when activation is studied at low Mg2+. The observation that both casein and type II histone are phosphorylated to the same extent at 1 mM and 10 mM Mg2+ suggested that high Mg2+ may be altering the conformation of phosphorylase kinase thus rendering more phosphorylation sites accessible to protein kinase. Since the phosphorylation of phosphorylase kinase by either the protein kinase-catalyzed or autocatalytic reaction can result in the incorporation of 7 to 9 mol of phosphate, the finding that only about seven sites become phosphorylated by both mechanisms acting together suggest that activation by these two mechanisms may involve common phosphorylation sites.  相似文献   

3.
Recently we have identified a mitogen-activated S6 kinase from Swiss 3T3 cells (Jen?, P., Ballou, L. M., Novak-Hofer, I., and Thomas, G. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 406-410). Here we describe the detailed purification of this enzyme from high-speed supernatants (400,000 x g) of vanadate-treated cell extracts. The enzyme is purified through six sequential steps including cation- and anion-exchange, sizing, and affinity chromatography. At each step, the enzyme behaves as one entity and, on the final step of purification, is revealed on silver-stained sodium dodecyl sulfate-polyacrylamide gels as a single protein of Mr 70,000. As reported earlier, the overall purification factor is 3,000-fold, and the specific activity of the homogeneously purified enzyme is 0.6 mumol/min/mg of protein. However, recovery of total activity is only 0.2%. This large loss of activity appears to be due to freeze-thawing the enzyme between each step of purification. The purified kinase does not phosphorylate casein, histones 2A and 3S, or phosvitin. It has a Km for ATP of 28 microM and a broad optimum for Mg2+ between 5 and 20 mM. Mn2+ does not affect the basal level of kinase activity, and at concentrations as low as 1 mM, it completely suppresses the effect of 20 mM Mg2+ on kinase activity. The relationship of this enzyme to two other purified S6 kinases is discussed.  相似文献   

4.
It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca2+/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced rate, after Ca2+ is removed from the reaction. This autophosphorylated form of the kinase is still sensitive to Ca2+/calmodulin, which is required for a maximum catalytic rate. After removal of Ca2+, new sites are autophosphorylated by the partially active kinase. Autophosphorylation of these sites abolishes sensitivity of the kinase to Ca2+/calmodulin (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R. (1987) J. Biol. Chem. 262, 8051-8055). We have identified two pairs of homologous residues, Thr305 and Ser314 in the alpha subunit and Thr306 and Ser315 in the beta subunit, that are autophosphorylated only after removal of Ca2+ from an autophosphorylation reaction. The sites were identified by direct sequencing of labeled tryptic phosphopeptides isolated by reverse-phase high pressure liquid chromatography. Thr305-306 is rapidly dephosphorylated by purified protein phosphatases 1 and 2A, whereas Ser314-315 is resistant to dephosphorylation. We have shown by selective dephosphorylation that the presence of phosphate on Thr305-306 blocks sensitivity of the kinase to Ca2+/calmodulin. In contrast, the presence of phosphate on Ser314-315 is associated with an increase in the Kact for Ca2+/calmodulin of only about 2-fold, producing a relatively small decrease in sensitivity to Ca2+/calmodulin.  相似文献   

5.
A cytosolic protein-tyrosine kinase has been highly purified from porcine spleen using [Val5]angiotensin II as a substrate. The purification procedure involves sequential column chromatographies on phosphocellulose, Sephacryl S-200, casein-Sepharose 4B, heparin-Sepharose CL-6B and anti-(4-aminobenzyl phosphonic acid)--Sepharose 4B. Analysis of the most highly purified preparation by SDS/PAGE revealed a major silver-stained band of molecular mass 40 kDa. The 40-kDa cytosolic protein-tyrosine kinase was purified approximately 10,000-fold with an overall yield of about 7%. It had autophosphorylation activity which was carried out by intramolecular catalysis. The stoichiometry of phosphate incorporation was about 1 mol phosphate/mol enzyme. In the autophosphorylation reaction, the apparent Km value for ATP was relatively low, 0.35 microM; Mn2+ was slightly preferred to Mg2+ as divalent cation. [Val5]Angiotensin II phosphorylation activity of the 40-kDa kinase increased with the amount of phosphate incorporated into the enzyme. A phosphate exchange reaction was observed during the autophosphorylation. These results suggest that the 40-kDa kinase described here is a different type of protein-tyrosine kinase than the enzymes so far reported.  相似文献   

6.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

7.
Many cell lines respond to mitogenic stimuli (serum, growth factors) with rapid phosphorylation of the ribosomal protein S6 at several serine sites. We have tried to identify the protein kinase(s) mediating this effect of growth stimuli. Examining post-DEAE chromatography fractions of S49 kin- cell extracts, we could detect a highly active effector-independent S6 kinase with specificity for serine residues. The study was extended to the presumably homologous human enzyme, using HeLa S3 cells as model system. Activity yields increased up to sevenfold when exhausted HeLa cells were supplied with fresh medium plus serum. The enzyme uses ATP, not GTP, as cosubstrate, 40-S or 80-S (reassociated from subunits) ribosomal particles being substrate. The optimal K+ concentration, measured at 3 mM Mg2+, is 35 mM. Under optimized assay conditions S6 phosphorylation proceeded faster in vitro than it appeared to do in vivo. The apparent Mr of the enzyme, as estimated by gel filtration on Sephadex G-100, is 56,000 (determination in the presence of 200 mM KCl in 25 mM phosphate buffer). Tighter binding to DEAE-Sephacel and higher specificity for S6 distinguishes this enzyme from the following S6-phosphorylating protein kinases: protein kinase C, protease-activated kinase II, histone-4 phosphotransferase and an enzyme with the properties of casein kinase I. In published summaries of observations shown here and in a follow-up study with chick embryo fibroblasts, the enzyme(s) has been referred to as mitogen-responsive S6 kinase(s) [Martini, O. H. W. and Lawen, A. (1985) in Hormones and cell regulation (Dumont, J. E., Hamprecht, B. and Nunez, J., eds) vol. 9, pp. 411-412, Elsevier Company, North-Holland, Amsterdam; Lawen, A. and Martini, O. H. W. (1985) FEBS Lett. 185, 272-276].  相似文献   

8.
The S6 kinase activity of astroglial cells in primary culture stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) has been studied. This activity was eluted as a single peak at 0.15 M NaCl from a DEAE-Sephacel column. The chromatography of this peak on phosphocellulose revealed an activity eluted at 0.15 M NaCl. This partially purified enzyme had a sedimentation coefficient of 3.7S; Km values were 2 X 10(-5) M for ATP and 10(-6) M for 40S ribosomal subunits. The optimal Mg2+ concentration requirement was 2-3 mM. Mn2+ and Co2+ could substitute for Mg2+ (optimum concentrations 1.5 and 0.8 mM, respectively), but these cations were strong inhibitors in the presence of Mg2+. The enzyme was inhibited by N-ethylmaleimide, indicating that it contained thiol groups. This S6 kinase used ATP, but not GTP, as a phosphate donor, and exhibited great specificity for S6 as phosphate acceptor. Whole histones and protamine were slightly phosphorylated whereas phosvitin, histone H1, and surprisingly the peptide Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala were not phosphorylated. The TPA-stimulated S6 kinase resembles the insulin-, fibroblast growth factor- and cyclic AMP-stimulated enzymes, suggesting that several pathways might activate the same entity.  相似文献   

9.
It has been previously demonstrated that the actin-activated Mg2+-ATPase activity of Acanthamoeba myosin II is inhibited by phosphorylation of its two heavy chains (Collins, J. H., and Korn, E. D. (1980) J. Biol. Chem. 255, 8011-8014). In this paper, it is shown that a partially purified kinase preparation from Acanthamoeba catalyzes the incorporation of 3 mol of phosphate into each mole of myosin II heavy chain. Tryptic digestion of the 32P-myosin, followed by two-dimensional peptide mapping, indicates that two of the three sites phosphorylated by the kinase in vitro correspond to the two major phosphorylation sites on the myosin heavy chain in vivo. Phosphorylation of myosin II in vitro by the kinase fraction completely inhibits the actin-activated Mg2+-ATPase activity of myosin II. Myosin II can be isolated in a highly phosphorylated, enzymatically inactive form, then dephosphorylated to an active form, and finally rephosphorylated to an inactive form. The Acanthamoeba kinase fraction catalyzes the phosphorylation of all three sites on the heavy chain of myosin II at virtually the same rate. From a comparison of the decrease in actin-activated Mg2+-ATPase activity with the amount of phosphate incorporated into myosin II, and from the results obtained previously by dephosphorylating myosin II (Collins, J. H., and Korn, E. D., (1980) J. Biol. Chem. 255, 8011-8014), it can be inferred that two of the sites phosphorylated in vitro act in a synergistic manner to inhibit the actin-activated myosin II Mg2+-ATPase.  相似文献   

10.
Incubation of a highly purified bovine spleen protein tyrosine kinase with [gamma-32P]ATP and Mg2+ resulted in a gradual radioactive labeling of the protein kinase (50 kDa) with no change in the protein kinase activity toward angiotensin II. On the other hand, treatment of the protein tyrosine kinase with an immobilized alkaline phosphatase caused essentially complete loss in the kinase activity, which could be restored by incubation of the enzyme with ATP and Mg2+. By using the alkaline phosphatase-treated kinase, time courses of the protein phosphorylation and the enzyme activation were demonstrated to correlate closely. These results indicate that this protein tyrosine kinase relies on autophosphorylation for activity and that the purified enzyme usually exists in a fully phosphorylated state. The radioactive labeling of the purified kinase during incubation with [gamma-32P]ATP resulted from a phosphate exchange reaction: the exchange of [gamma-32P]phosphate of ATP with the protein bound phosphate as previously suggested (Kong, S.K., and Wang, J.H. (1987) J. Biol. Chem. 262, 2597-2603). It could be shown that the autophosphorylation of phosphatase-treated tyrosine kinase was strongly inhibited by the substrate angiotensin II, whereas the exchange reaction carried out with untreated tyrosine kinase was not. Autophosphorylation is suggested to be an intermolecular reaction since its initial rate is proportional to the square of the protein concentration.  相似文献   

11.
Phosphorylation of caldesmon by cdc2 kinase   总被引:6,自引:0,他引:6  
A recent report that mitosis-specific phosphorylation causes the nonmuscle caldesmon to dissociate from microfilaments (Yamashiro, S., Yamakita, Y., Ishikawa, R., and Matsumura, F. (1990) Nature 344, 675-678) suggests that this process may contribute to the major structural reorganization of the eukaryotic cell at mitosis. In this study we have demonstrated that smooth muscle caldesmon is phosphorylated in vitro by cdc2 kinase from mitotic phase HeLa cells to 1.2 mol of phosphate/mol of caldesmon. Tryptic maps showed three major phosphorylated spots and approximately equal amounts of phosphorylated Ser and Thr were identified. F-actin or calmodulin in the presence of Ca2+ blocks the phosphorylation of caldesmon. Phosphorylation of caldesmon greatly reduced its binding to F-actin. The phosphorylation sites were located in a 10,000-Da CnBr fragment at the COOH-terminal end of the caldesmon molecule known to house the binding sites for actin and calmodulin (Bartegi A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238). Our finding supports the model that phosphorylation of caldesmon by cdc2 kinase at mitosis may contribute to the disassembly of the microfilament bundles during prophase.  相似文献   

12.
Pyruvate kinase of Streptococcus mutans JC 2 had an absolute and specific requirement for glucose-6-phosphate. Inorganic phosphate was a strong inhibitor. The enzyme required K+ or NH4+ and Mg2+ or Mn2+. S. mutans FIL and E 49, Streptococcus bovis ATCC 9809, and Streptococcus salivarius ATCC 13419 had also glucose-6-phosphate-dependent pyruvate kinases, whereas Streptococcus sanguis NCTC 10904 had an enzyme activated by fructose-1,6-diphosphate.  相似文献   

13.
Bovine cardiac troponin isolated in a highly phosphorylated form shows four 31P-NMR signals [Beier, N., Jaquet, K., Schnackerz, K. & Heilmeyer, L.M.G. Jr (1988) Eur. J. Biochem. 176, 327-334]. Troponin I, which contains phosphate covalently linked to serine-23 and/or -24 [Swiderek, K., Jaquet, K., Meyer, H. E. & Heilmeyer, L. M. G. Jr (1988) Eur. J. Biochem. 176, 335-342], shows three resonances. Mg2(+)-saturation of holotroponin shifts these troponin I resonances to higher fields. Direct binding of Mg2+ to the phosphate groups can be excluded. Both these serine residues of troponin I, 23 and 24, are substrates for cAMP- and cGMP-dependent protein kinases as well as for protein kinase C. Isolated bovine cardiac troponin T contains 1.5 mol phosphoserine/mol protein, indicating that minimally two serine residues are phosphorylated. One phosphoserine residue is located at the N-terminus. An additional phosphoserine is located in the C-terminal cyanogen bromide fragment, CN4, which contains covalently bound phosphate. Protein kinase C phosphorylates serine-194, thus demonstrating exposure of this residue on the surface of holotoponin.  相似文献   

14.
Treatment of quiescent 3T3 cells with sodium orthovanadate induces a 10-fold stimulation of a kinase that phosphorylates ribosomal protein S6. The kinase in crude extracts is extremely labile and rapidly loses activity when incubated at 37 degrees C. This reaction is blocked by phosphatase inhibitors such as p-nitrophenyl phosphate and beta-glycerophosphate, suggesting that dephosphorylation of the kinase leads to its inactivation (Novak-Hofer, I., and Thomas, G. (1985) J. Biol. Chem. 260, 10314-10319). After three steps of purification the kinase can be separated from greater than 99% of the cellular phosphorylase a phosphatases. At this stage the kinase preparation is almost completely stable but can be inactivated by readdition of specific column fractions that contain both phosphorylase phosphatase and protease activity. However, employing a number of specific inhibitors it is shown that the inactivating agent in these fractions is a protein phosphatase. Furthermore, the physical and enzymatic properties of the kinase inactivator argue that it can be classified as a type 2A phosphatase. These results are consistent with the finding that the purified catalytic subunits of phosphatase type 1 and type 2A also inactivate the kinase. At equivalent phosphorylase a phosphatase activities, the type 2A catalytic subunit is 3 times more potent than the type 1 enzyme in carrying out this reaction. These data indicate that the major S6 kinase inactivator in 3T3 cell extracts is a type 2A phosphatase, supporting the hypothesis that the orthovanadate-stimulated S6 kinase is regulated in vivo by a phosphorylation-dephosphorylation mechanism.  相似文献   

15.
Kidney alkaline phosphatase is an enzyme which requires two types of metals for maximal activity: zinc, which is essential, and magnesium, which is stimulatory. The main features of the Mg2+ stimulation have been analyzed. The stimulation is pH-dependent and is observed mainly between pH 7.5 and 10.5. Mg2+ binding to native alkaline phosphatase is characterized by a dissociation constant of 50 muM at pH 8.5,25 degrees. Binding of Zn2+ is an athermic process. Both the rate constants of association, ka, and of dissociation, kd, have low values. Typical values are 7 M(-1) at pH 8.0, 25 degrees, for ka and 4.10(-4) S(-1) at pH 8.0, 25 degrees, for kd. The on and off processes have high activation energies of 29 kcal mol (-1). Mg2+ can be replaced at its specific site by Mn2+, Co2+, Ni2+, and Zn2+. Zinc binding to the Mg2+ site inhibits the native alkaline phosphatase. Mn2+, Co2+, and Ni2+ also bind to the Mg2+ site with a stimulatory effect which is nearly identic-al with that of Mg2+, Mn2+ is the stimulatory cation which binds most tightly to the Mg2+ site; the dissociation constant of the Mn2+ kidney phosphatase complex is 2 muM at pH 8.5. The stoichiometry of Mn2+ binding has been found to be 1 eq of Mn2+ per mol of dimeric kidney phosphatase. The native enzyme displays absolute half-site reactivity for Mn2+ binding. Mg2+ binding site and the substrate binding sites are distinct sites. The Mg2+ stimulation corresponds to an allosteric effect. Mg2+ binding to its specific sites does not affect substrate recognition, it selectively affects Vmax values. Quenching of the phosphoenzyme formed under steady state conditions with [32P]AMP as a substrate as well as stopped flow analysis of the catalyzed hydrolysis of 2,4-dinitrophenyl phosphate or p-nitrophenyl phosphate have shown that the two active sites of the native and of the Mg2+-stimulated enzyme are not equivalent. Stopped flow analysis indicated that one of the two active sites was phosphorylated very rapidly whereas the other one was phosphorylated much more slowly at pH 4.2. Half of the sites were shown to be reactive at pH 8.0. Quenching experiments have shown that only one of the two sites is phosphorylated at any instant; this result was confirmed by the stopped flow observation of a burst of only 1 mol of nitrophenol per mol of dimeric phosphatase in the pre-steady state hydrolysis of p-nitrophenyl phosphate. The half-of-the-sites reactivity observed for the native and for the Mg2+-stimulated enzyme indicates that the same type of complex, the monophosphorylated complex, accumulates under steady state conditions with both types of enzymes. Mg2+ binding to the native enzyme at pH 8.0 increases considerably the dephosphorylation rate of this monophosphorylated intermediate. A possible mechanism of Mg2+ stimulation is discussed.  相似文献   

16.
The activation of the epidermal growth factor (EGF) receptor tyrosine kinase activity is thought to represent a key initial step in EGF-mediated mitogenesis. The mechanisms underlying the regulation of the EGF receptor tyrosine kinase activity were examined through comparisons of the holoreceptor, purified from human placenta, and a soluble 42 kDa tyrosine kinase domain (TKD), generated by the limited trypsin proteolysis of the holoreceptor. The results of these studies highlight the importance of divalent metal ions (Me2+), i.e., Mn2+ and Mg2+, as activators of the tyrosine kinase activity. Manganese is an extremely effective activator of the holoreceptor tyrosine kinase, and under some conditions (low ionic strength) it completely alleviates the need for EGF to stimulate activity. In contrast, Mg2+ only weakly stimulates the holoreceptor tyrosine kinase activity in the absence of EGF, but promotes essentially full activity in the presence of the growth factor. Like the holoreceptor, the soluble TKD is highly active in the presence of Mn2+. However, the isolated TKD is completely inactive in the presence of Mg2+, and, in fact, Mg2+ inhibits the Mn2(+)-stimulated tyrosine kinase activity. The differences in the effects of Mn2+ and Mg2+ on the isolated TKD were further demonstrated by monitoring the effects of Me2+ on the modification of a reactive cysteine residue(s) on the TKD. While Mn2+ potentiates the inhibition by cysteine-directed reagents of the tyrosine kinase activity, Mg2+ has no effect on either the rate or the extent of the inhibition. Both the regulation by Mn2+ of the kinase activity of the TKD and the potentiation by Mn2+ of the cysteine reactivity of the TKD occur over a millimolar concentration range, which implicates a direct binding interaction by the metal ion. Overall, these results demonstrate that there are two key activator sites on the EGF receptor, i.e., the EGF binding site on the extracellular domain and a Me2+ binding site on the cytoplasmic TKD. Me2+ interactions with the cytoplasmic kinase domain apparently result in conformational changes which regulate the levels of tyrosine kinase activity, influence the degree to which this activity is responsive to EGF, and probably account for the effects of Me2+ on the aggregation state of the receptor (Carraway, K.L., III, Koland, J.G. and Cerione, R.A. (1989) J. Biol. Chem. 264, 8699-8707). In general, Mg2(+)-induced conformation changes prime the receptor for activation by EGF, while Mn2+ can fully activate the receptor tyrosine kinase and thereby short-circuit growth factor control.  相似文献   

17.
Oxidants induce phosphorylation of ribosomal protein S6   总被引:1,自引:0,他引:1  
We have investigated the phosphorylation of the ribosomal S6 protein which may be on the pathway of mitogenic stimulation in response to oxidants. Mouse epidermal cells JB6 (clone 41) were exposed to active oxygen generated extracellularly by glucose/glucose oxidase (producing H2O2) or xanthine oxidase (producing H2O2 plus superoxide) or active oxygen produced intracellularly by the metabolism of menadione (producing mostly superoxide). All three sources of active oxygen induced rapidly a protein kinase activity which phosphorylated S6 in cellular extracts prepared in the presence of the phosphatase inhibitor beta-glycerophosphate. Maximal activity was reached within 15 min of exposure, and phosphorylation occurred specifically at serine residues. Strong activation of the protein kinase activity was also observed by diamide which selectively oxidizes SH functions. The following observations characterize the reaction: 1) Extracellular addition of catalase but not Cu,Zn-superoxide dismutase was inhibitory, implicating H2O2 rather than superoxide as the active species. 2) Exposure of JB6 cells to reagent H2O2 or H2O2 released by glucose/glucose oxidase resulted in a measurable increase in intracellular free Ca2+. 3) The intracellular Ca2+ complexer quin 2 suppressed the reaction. 4) The calmodulin antagonist trifluoperazine prevented the activation of the protein kinase. 5) Exposure of cells to Mn2+ and La3+, which stimulate calmodulin-dependent activities, potently increased the S6 kinase activity of the cell extracts. 6) Desalted extracts strictly required the addition of Mg2+ and their activity was inhibited by Mn2+. In contrast, the phosphorylation of a 95-kDa protein was strongly stimulated by Mn2+. 7) For several agonists, i.e. active oxygen, phorbol 12-myristate 13-acetate, and serum, tryptic peptide analysis yielded the same phosphopeptides, suggesting that a common S6 kinase is involved in these reactions. From these data we propose that oxidants induce an increase in intracellular free Ca2+ which activates a Ca2+/calmodulin-dependent protein kinase and, as a consequence, an S6 kinase.  相似文献   

18.
Ca2+-activated and phospholipid-dependent protein kinase (protein kinase C) isolated from rat brain cytosol undergoes autophosphorylation in the presence of Mg2+, ATP, Ca2+, phosphatidylserine, and diolein. Approximately 2-2.5 mol of phosphate were incorporated per mol of the kinase. After sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography, the phosphorylated kinase showed a single protein band of Mr = 82,000 compared to the Mr = 80,000 of the nonphosphorylated enzyme. Analysis of the 32P-labeled tryptic peptides derived from the autophosphorylated kinase by peptide mapping revealed that multiple sites were phosphorylated. Both serine and threonine residues were found to be labeled with 32P. Limited proteolysis of the autophosphorylated kinase with trypsin resulted in the conversion of the kinase into a phospholipid- and Ca2+-independent form. Two major 32P-labeled fragments, Mr = 48,000 and 38,000, were formed as a result of proteolysis, suggesting that the catalytic domain and possibly the Ca2+- and phospholipid-binding region were both phosphorylated. Protein kinase C autophosphorylation has a Km for ATP (1.5 microM) about 10-fold lower than that for phosphorylation of exogenous substrates. The kinetically preferred autophosphorylation appears to be an intramolecular reaction. The autophosphorylated protein kinase C, unlike the protease-degraded enzyme, still depends on Ca2+ and phospholipid for maximal activity. However, the autophosphorylated form of the kinase has a lower Ka for Ca2+ and a higher affinity for the binding of [3H]phorbol-12, 13-dibutyrate. These findings suggest that autophosphorylation of protein kinase C may be important in the regulation of the enzymic activity subsequent to signal transduction.  相似文献   

19.
The cell-free, nerve growth factor-sensitive incorporation of radioactive phosphate into a 100,000-dalton protein (Nsp100), observed in a previous study (End,D., Tolson, N., Hashimoto, S., and Guroff, G. (1983) J. Biol. Chem. 258, 6549-6555), has been characterized and the system fractionated. It is shown here that the decrease in incorporation due to treatment of the cells with nerve growth factor is transient, even in the continued presence of nerve growth factor. The decrease in radioactive phosphate incorporation is due to an inhibition of phosphorylation, not to a stimulation of a dephosphorylation. Evidence is presented to suggest that no soluble cofactors are needed for the phosphorylation and no soluble second messengers are responsible for the inhibition. It is demonstrated that the phosphorylation requires divalent cations; both Mg2+ and Mn2+ are effective in this regard. ATP is the preferred phosphate donor, the phosphorylation is maximal at pH values between 5 and 6, and Na+, K+, and Zn2+ are rather specific inhibitors. The system has been partially purified and the resolved components have been used to show that the kinase and the substrate are separate molecules, that the kinase, not the substrate, is the heat-labile portion, and that the kinase has a molecular weight of 110,000-130,000. Finally, evidence is presented to indicate that the kinase, not the substrate, is the component responsible for the decrease in phosphorylation seen after treatment of the cells with nerve growth factor.  相似文献   

20.
R E Hurd  E Azhderian  B R Reid 《Biochemistry》1979,18(18):4012-4017
We have studied the effects of Co2+ and Mn2+ ions on the low-field nuclear magnetic resonance (NMR) spectra of pure class 1 transfer ribonucleic acid (tRNA) species. With 1.2 mM tRNA in the presence of 15 mM MgCl2 discrete paramagnetic effects were observed for Co2+ at concentrations in the range 0.02--0.1 mM and for Mn2+ in the range 0.002--0.01 mM, indicating fast exchange of these cations with tRNA. Both of these cations paramagnetically relax the s4U8--A14 resonance as well as other resonances from proximal base pairs. The Co2+ site appears to be the same site on G15 which was observed crystallographically [Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S., & Klug, A. (1977) J. Mol. Biol. 111, 315-328]; the initially occupied tight Mn2+ site is the cation site involving the phosphate of U8. There are three base pairs within 10 A of both sites, namely, G15--C48, A14--s4U8, and C13--G22; this has led to the assignment of the G15--C48 and C13--G22 resonances in the NMR spectrum [Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S., & Klug, A. (1977) J. Mol. Biol. 111, 315--328; Holbrook, S. R., Sussman, J. L., Warrant, R. W., Church, G. M., & Kim, Sung-Hou (1977) Nucleic Acids Res. 4, 2811--2820; Quigley, G. J., Teeter, M. M., & Rich, A. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 64--68].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号