首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The location of the trigeminal motoneurons of the jaw muscles has been determined in the brainstem of the mallard utilizing retrograde axonal transport of horseradish peroxidase (HRP). Injections with HRP into the jaw muscles or application of HRP to the mandibular nerve showed that the trigeminal motor nucleus can be subdivided into five subnuclei, mV1-mV5. Three functional groups of jaw muscles are represented in separate subnuclei. The most lateral subnucleus mV2 innervates all but one adductor muscles, the intermediate mV1 innervates the pterygoid muscles + one adductor and the medial mV4 the two protractor muscles. The most ventral subnucleus mV3 contains the neurons innervating two extrinsic tongue muscles as well as some perikarya of adductor muscles. Subnucleus mV5 lies dorsomedial to mV4 and contains the motoneurons of the depressor muscle of the lower eye lid. Elements of the proprioceptive system, viz. presumptive gamma-neurons and mesencephalic trigeminal nucleus cells, could also be visualized. The topological and functional aspects of the subdivision of the motor nucleus are discussed.  相似文献   

2.
Young adult albino rats of Wistar strain were used for the present study. 0.5 to 15 microliters of 20-50% of horseradish peroxidase (HRP) were injected into each individual muscle of mastication to label neurons in the trigeminal motor nucleus (TMON) for light microscopic study. The results reveal that: (1) Many HRP-labeled, multipolar neurons are observed in the motor nucleus in each jaw-closing muscle (JCM) with less in each the jaw-opening muscle (JOM). (2) The motor neurons innervating each masticatory muscle in the motor nucleus show a somatotopic arrangement: (a) those innervating the temporalis muscle are located in the medial and dorsomedial parts; (b) those innervating the masseter muscle are located in the intermediate and lateral; (c) those innervating the medial and lateral pterygoid muscles are located in the lateral, ventrolateral and ventromedial parts, respectively; and (d) those innervating the mylohyoid and the anterior belly of the digastric muscles are located in the most ventromedial part of the caudal one-third of the nucleus. Axons of most masticatory motor neurons run ventrolaterally in between the motor and the chief sensory nuclei of the trigeminal nerve. However, those of the mylohyoid and anterior belly of the digastric muscles ascend dorsally to the dorsal aspect of the caudal nucleus and then turn ventrolaterally to join the motor root of the trigeminal nerve. Furthermore, the dendrites of the motor neuron of JCM converge dorsocaudally to the supratrigeminal region. The diameters of neurons of each JCM display a bimodal distribution. However, an unimodal distribution is present in the motor neurons from each JCM. It is suggested that the motor nucleus innervating the JCM is comprised of comprised of alpha- and gamma-motor neurons. It, thus, may provide a neural basis for the regulation of the muscle tone and biting force.  相似文献   

3.
Behavioral observations demonstrate that bilateral deafferentation of the hypoglossal nerves in the marine toad (Bufo marinus) prevents mouth opening during feeding. In the present study, we used high-speed videography, electromyography (EMG), deafferentation, muscle stimulation, and extracellular recordings from the trigeminal nerve to investigate the mechanism by which sensory feedback from the tongue controls the jaw muscles of toads. Our results show that sensory feedback from the tongue enters the brain through the hypoglossal nerve during normal feeding. This feedback appears to inhibit both tonic and phasic activity of the jaw levators. Hypoglossal feedback apparently functions to coordinate tongue protraction and mouth opening during feeding. Among anurans, the primitive condition is the absence of a highly protrusible tongue and the absence of a hypoglossal sensory feedback system. The hypoglossal feedback system evolved in parallel with the acquisition of a highly protrusible tongue in toads and their relatives.  相似文献   

4.
In Xenopus tailbud embryos, the mandibular branch of trigeminal sensory nerve has a transient pathway innervating the cement gland. This pathway is settled by pioneer neurons in the trigeminal ganglion and along which extend later-growing axons from the trigeminal ganglion and the hindbrain. Axons in this branch express a neuronal recognition molecule, Contactin 1, from the initial stage of its outgrowth in early tailbud embryos and form a tightly joined, strongly Contactin 1-positive fascicle in the later stages. When the expression vector encoding the enhanced green fluorescent protein was electrotransfected into the brain neurons of early tailbud embryos, the fluorescence was detected in the hindbrain and the trigeminal nerve at late tailbud stages. Cotransfection of antisense vector caused knockdown of Contactin 1 concurrent with defasciculation and misguidance of the sensory axons in the trigeminal mandibular branch. The results suggest that Contactin 1 is required for the growing axon of hindbrain sensory neurons to recognize and follow the pathway settled by the pioneer neurons.  相似文献   

5.
The temporalis: blood supply and innervation   总被引:3,自引:0,他引:3  
  相似文献   

6.
In this study, we investigate the possible role of ephrin-Eph signaling in trigeminal motor axon projections. We find that EphA receptors are expressed at higher levels by rhombomere 2 (r2) trigeminal motor neurons than by r3 trigeminal motor neurons in the chick embryo. Mapping of rhombomere-specific axon projections shows that r2 and r3 trigeminal motor neurons project to different muscle targets, including the mandibular adductor and the intermandibularis muscles respectively. Ephrin-A5 is expressed in these muscles, especially in some regions of the intermandibularis muscle, and can cause growth cone collapse of both r2 and r3 motor axons in vitro. We demonstrate that in vivo overexpression of ephrin-A5 in the intermandibularis muscle, or overexpression of dominant-negative EphA receptors in trigeminal motor neurons leads to a reduction in branching of r3-derived motor axons specifically. Overexpression of full-length EphA receptors impairs the formation of r3 projections to the intermandibularis muscle. These findings indicate that ephrins and their Eph receptors play a role in trigeminal motor axon topographic mapping and in rhombomere 3-derived projections in particular.  相似文献   

7.
The reflex upper airway (UA) motor response to UA negative pressure (UANP) is attenuated by neuromuscular blockade. We hypothesized that this is due to a reduction in the sensitivity of laryngeal mechanoreceptors to changes in UA pressure. We examined the effect of neuromuscular blockade on hypoglossal motor responses to UANP and to asphyxia in 15 anesthetized, thoracotomized, artificially ventilated rats. The activity of laryngeal mechanoreceptors is influenced by contractions of laryngeal and tongue muscles, so we studied the effect of selective denervation of these muscle groups on the UA motor response to UANP and to asphyxia, recording from the pharyngeal branch of the glossopharyngeal nerve (n = 11). We also examined the effect of tongue and laryngeal muscle denervation on superior laryngeal nerve (SLN) afferent activity at different airway transmural pressures (n = 6). Neuromuscular blockade and denervation of laryngeal and tongue muscles significantly reduced baseline UA motor nerve activity (P < 0.05), caused a small but significant attenuation of the motor response to asphyxia, and markedly attenuated the response to UANP. Motor denervation of tongue and laryngeal muscles significantly decreased SLN afferent activity and altered the response to UANP. We conclude that skeletal muscle relaxation reduces the reflex UA motor response to UANP, and this may be due to a reduction in the excitability of UA motor systems as well as a decrease of the response of SLN afferents to UANP.  相似文献   

8.
Retrograde transport of fluorescent tracers (diamidino yellow and true blue) was used to study the arrangement of brainstem neurons innervating the lateral pterygoid muscle in the rat. The lateral pterygoid motoneurons were located in the dorsolateral (jaw-closing) part of the trigeminal motor nucleus with clear somatotopy in the caudal part of the nucleus. No muscle-related neurons were present in the mesencephalic trigeminal nucleus. Histological examination of serial sections of lateral pterygoid muscles confirms the notion that, at least in the rat, this muscle is devoid of muscle spindles.  相似文献   

9.
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.  相似文献   

10.
Previous studies reported that a subpopulation of mouse and rat trigeminal neurons express water channel aquaporin-1 (AQP1). In this study we make a comparative investigation of AQP1 localization in the human and mouse trigeminal systems. Immunohistochemistry and immunofluorescence results showed that AQP1 was localized to the cytoplasm and cell membrane of some medium and small-sized trigeminal neurons. Additionally, AQP1 was found in numerous peripheral trigeminal axons of humans and mice. In the central trigeminal root and brain stem, AQP1 was specifically expressed in astrocytes of humans, but was restricted to nerve fibers within the central trigeminal root and spinal trigeminal tract and nucleus in mice. Furthermore, AQP1 positive nerve fibers were present in the mucosal and submucosal layers of human and mouse oral tissues, but not in the muscular and subcutaneous layers. Fluorogold retrograde tracing demonstrated that AQP1 positive trigeminal neurons innervate the mucosa but not skin of cheek. These results reveal there are similarities and differences in the cellular localization of AQP1 between the human and mouse trigeminal systems. Selective expression of AQP1 in the trigeminal neurons innervating the oral mucosa indicates an involvement of AQP1 in oral sensory transduction.  相似文献   

11.
Spontaneous rhythmically bursting activity was recorded from the trigeminal, vagal and hypoglossal nerve roots of the isolated brainstem from the frogsRana catesbeiana andRana pipiens superfused with a bicarbonate-free HEPES-buffer solution. Burst frequency, burst duration and the activity profile of the spontaneous neural discharges in vitro resembled those of a less radical preparation, the decerebrate, fictively breathing frog. After complete midsagittal section, each half of the isolated brainstem generated its own rhythmic neural activity which resembled that of the intact isolated brainstem. The spontaneous activity generated within each half of the brainstem is probably coordinated by decussating axons or by groups of neurons located along the midline of the brainstem. Our results suggest that these coordinating entities extend the length of the brainstem (in a rostro-caudal dimension) and the degree of contact rather than the location of the contact between the two halves of the brainstem determines the synchronization of the right and left halves. Burst frequency of both the intact and hemisected brainstem preparation was decreased by alkaline challenge and increased by acid challenge. We conclude that this endogeneous rhythmic activity represents the efferent motor output underlying lung ventilation in these animals.Abbreviations EMG electromyogram - ENG electroneurogram - V trigeminal nerve - Vmd mandibular branch of trigeminal nerve - X vagal nerve - X1 laryngeal branch of vagal nerve - H hypoglossal nerve - Hsh sternohyoid branch of hypoglossal nerve - Hm main branch of hypoglossal nerve  相似文献   

12.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by &#110 motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

13.
Primary sensory neurons project to motor neurons directly or through interneurons and affect their activity. In our previous paper we showed that intramuscular sprouting can be affected by changing the sensory synaptic input to motor neurons. In this work, motor axon sprouting within a peripheral nerve (extramuscular sprouting) was induced by nerve injury at such a distance from muscle so as not to allow nerve-muscle trophic interactions. Two different procedures were carried out: (1) sciatic nerve crush and (2) sciatic nerve crush with homosegmental ipsilateral L3-L5 dorsal rhizotomy. The number of regenerating motor axons innervating extensor digitorum longus muscle was determined by in vivo muscle tension recordings and an index of their individual conduction rate was obtained by in vitro intracellular recordings of excitatory postsynaptic end-plate potentials in muscle fibers. The main findings were: (1) there are more regenerated axons distally from the lesion than parent axons proximally to the lesion (sprouting at the lesion); (2) sprouting at the lesion was negatively affected by homosegmental ipsilateral dorsal rhizotomy; (3) the number of motor axons innervating extensor digitorum longus muscle extrafusal fibers counted proximally to the lesion increased following nerve injury and regeneration but this did not occur when sensory input was lost. A transient innervation of extrafusal fibers by gamma motor neurons may explain the increase of motor axons counted proximally to the lesion.  相似文献   

14.
Optogenetic control of the peripheral nervous system (PNS) would enable novel studies of motor control, somatosensory transduction, and pain processing. Such control requires the development of methods to deliver opsins and light to targeted sub-populations of neurons within peripheral nerves. We report here methods to deliver opsins and light to targeted peripheral neurons and robust optogenetic modulation of motor neuron activity in freely moving, non-transgenic mammals. We show that intramuscular injection of adeno-associated virus serotype 6 enables expression of channelrhodopsin (ChR2) in motor neurons innervating the injected muscle. Illumination of nerves containing mixed populations of axons from these targeted neurons and from neurons innervating other muscles produces ChR2-mediated optogenetic activation restricted to the injected muscle. We demonstrate that an implanted optical nerve cuff is well-tolerated, delivers light to the sciatic nerve, and optically stimulates muscle in freely moving rats. These methods can be broadly applied to study PNS disorders and lay the groundwork for future therapeutic application of optogenetics.  相似文献   

15.
This study was undertaken to localize substance P-like immunoreactivity (SP) in the nerve fibers innervating the palate, identify the ganglion of the palatine nerve and determine whether it contains SP cell bodies, in the frog Rana pipiens. The palatine nerve which is a branch of the maxillo-mandibular subdivision of the trigeminal nerve was traced to the trigeminal ganglion that connects to the medulla by the trigeminal nerve root. Using an immunocytochemical method, SP containing fibers with varicosities were found in the connective tissue layer of the palate. Some of these fibers were observed adjacent to blood vessels to the epithelial layer of the palate in apparent innervation of the ciliated epithelial and mucus cells. SP-labeling was also observed in small to medium cells of the trigeminal ganglion. These results appear to support the pharmacological studies of SP on the regulation of mucociliary activity in the frog R. pipiens.  相似文献   

16.
Interneurons of the supratrigeminal nucleus, transmitting effects from the sensory and motor branches of the trigeminal nerve to motoneurons of the muscles of mastication were investigated. Two groups of interneurons with different functional connections were found. The first group (A) contains neurons excited during stimulation of the sensory branches and the motor nerve to the digastric muscle (A1), neurons excited during stimulation of sensory branches and high-threshold afferents of the motor nerve to the masseter muscle (A2), and neurons excited only by low-threshold afferents of the motor nerve to the masseter muscle (A3). Neurons of the second group (B) were activated only by sensory fibers of the trigeminal nerve. It is postulated that interneurons of group A transmit inhibitory effects to motoneurons of antagonist muscles of the lower jaw. Group B interneurons participate in the transmission of excitatory influences to motoneurons of the digastric muscle.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 150–157, March–April, 1972.  相似文献   

17.
Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest‐derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. J. Morphol. 275:191–205, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
目的观察I、Ⅱ型囊泡膜谷氨酸转运体阳性纤维在大鼠三叉神经运动核内的分布。方法首先采用免疫荧光三重标记I、Ⅱ型囊泡膜谷氨酸转运体和神经元核蛋白以观察I、Ⅱ型囊泡膜谷氨酸转运体阳性纤维在大鼠三叉神经运动核内的分布;接着注射四甲基罗达明人下颌舌骨肌神经逆行标记三叉神经运动核开口神经元,再采用免疫荧光双重标记I型囊泡膜谷氨酸转运体和神经元核蛋白以观察I、Ⅱ型囊泡膜谷氨酸转运体阳性纤维在大鼠三叉神经运动核开口神经元区和闭口神经元区内的分布差异。结果I型囊泡膜谷氨酸转运体阳性纤维仅在三叉神经运动核背外侧部分布,而Ⅱ型囊泡膜谷氨酸转运体阳性纤维在整个三叉神经运动核内分布;开口神经元区未观察到I型囊泡膜谷氨酸转运体阳性终末。结论闭口神经元接受I、Ⅱ型囊泡膜谷氨酸转运体阳性纤维支配,开口神经元仅仅接受Ⅱ型囊泡膜谷氨酸转运体阳性纤维支配。  相似文献   

19.
Cobalt axonal iontophoresis and intracellular recordings were used to identify a cluster of several motor neurons innervating the penis-retractor muscle of Aplysia. Intracellularly recorded motor neuron action potentials elicited direct, one-for-one, constant latency excitatory junctional potentials (ejps) in individual muscle fibers. The axons of motor neurons could be recorded extracellularly in the penis-retractor nerve and stimulation of the nerve backfired the motor neurons. Perfusion of the ganglion, the muscle, or both with solutions of either increased Mg++/decreased Ca++ or increased Ca++ sea water indicated that the presumed motor neuron impaled was not a sensory cell and that interneurons were not intercalated in the pathway. Innervation of muscle fibers was found to be functionally polyneuronal and diffuse. The ejps were found to undergo marked facilitation with repetitive motor-neuron stimulation. The motor neurons were isolated in a distinct cluster in the right pedal ganglion. Their electrical activity was characterized by spontaneous irregular action potentials and a moderate input of postsynaptic potentials.  相似文献   

20.
The expression of the immediate early gene, c-fos, was used to determine the distribution of brainstem neurons activated by stimulation of the distal hypoglossal nerve (XIIn) trunk. The traditional view of the XIIn is one of purely motor function; however, stimulation of XIIn excites neurons in the trigeminal spinal nucleus. The rationale for this study was to use c-fos expression as a marker for postsynaptic activity to define the pattern of brainstem neurons excited by XIIn stimulation. It was further hypothesized that if the afferent fibers that course within XIIn supply deep lingual tissues, then c-fos expression after direct stimulation of XIIn should display a pattern similar to that seen after chemical irritant stimulation of the deep tongue muscle. In barbiturate-anesthetized male rats electrical stimulation of XIIn produced a significant increase in Fospositive neurons in the dorsal paratrigeminal nucleus (dPa5) and laminae I-II of caudal subnucleus caudalis (Vc) and upper cervical dorsal horn. Mustard oil injection into the deep tongue muscle also produced an increase in c-fos expression in dPa5; however, the highest density of expression occurred in laminae I-II at the dorsomedial aspect of rostral Vc. Both electrical stimulation of XIIn and mustard oil stimulation of the deep tongue increased c-fos expression in the caudal ventrolateral medulla, an autonomic relay nucleus. These results suggest that one site of innervation for afferent fibers that travel within the distal trunk of XIIn is to supply the deep tongue muscle and to terminate in the dPa5. A second group of postsynaptic neurons activated only by XIIn stimulation was located in lamina I-II in caudal portions of Vc and upper cervical dorsal horn, a laminar distribution consistent with a role for XIIn afferents in sensory or autonomic aspects of lingual function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号