首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(6):626-629
Dihydroxyacetone (DHA) was examined to explore its trypanocidal activity. The compound is easily taken up by trypanosomes via its aquaglyceroporins but is not converted to a glycolytic intermediate due to the lack of a respective kinase. Investigating the DHA-induced cell death it became evident that parasites die by autophagy rather than by necrosis or apoptosis. Since autophagy is not well studied in African trypanosomes our work offers a way to investigate the importance of autophagy for trypanosomes not only for stress coping but also for organelle reconstruction during differentiation.

Antiproliferative Effect of Dihydroxyacetone on Trypanosoma brucei Bloodstream Forms: Cell Cycle Progression, Subcellular Alterations and Cell Death

N.L. Uzcátegui, D. Carmona-Gutiérrez, V. Denninger, C. Schoenfeld, F. Lang, K. Figarella and M. Duszenko

Antimicrob Agents Chemother 2007; In press  相似文献   

2.
African trypanosomes produce some prostanoids, especially PGD2, PGE2 and PGF2alpha (Kubata et al. 2000, J. Exp. Med. 192: 1327-1338), probably to interfere with the host's physiological response. However, addition of prostaglandin D2 (but not PGE2 or PGF2alpha) to cultured bloodstream form trypanosomes led also to a significant inhibition of cell growth. Based on morphological alterations and specific staining methods using vital dyes, necrosis and autophagy were excluded. Here, we report that in bloodstream form trypanosomes PGD2 induces an apoptosis-like programmed cell death, which includes maintenance of plasma membrane integrity, phosphatidylserine exposure, loss of mitochondrial membrane potential, nuclear chromatin condensation and DNA degradation. The use of caspase inhibitors cannot prevent the cell death, indicating that the process is caspase-independent. Based on these results, we suggest that PGD2-induced programmed cell death is part of the population density regulation as observed in infected animals.  相似文献   

3.
《Autophagy》2013,9(8):1085-1091
Bioinformatic searches of genome databases revealed that the number of autophagy-related genes (ATG) is considerably lower in trypanosomes than in higher eukaryotes and even in yeast. This raises the question of whether autophagy in this protozoan parasite is more primitive and represents a rudimentary paradigm due to its early branching off the evolutionary tree. We here present the crystal structure of TbATG8B. This molecule (MW 13.7 kDa) belongs to the ubiquitin-like proteins showing the typical ubiquitin fold and strong sequence homology to LC3, the human homologue. Due to its characteristic folding, it should readily bind to TbATG4.1 for being processed. This presumption was tested by molecular modeling approaches, docking TbATG8B to a homology model of TbATG4.1. Although exchanges of several amino acids are evident from sequence comparisons, the overall structure seems very much alike and the necessary catalytic triad (C-D-H) is well conserved in TbATG4.1. Thus membrane formation during appearance of the autophagic bodies seems very similar in trypanosomes and their higher eukaryotic counterpart.  相似文献   

4.
In the bloodstream of the mammalian host, Trypanosoma brucei takes up host transferrin by means of a high-affinity uptake system, presumably a transferrin receptor. Transferrin-binding activity is seen in the flagellar pocket and is absent in insect form trypanosomes. By transfection we have reconstituted a transferrin-binding complex in insect form trypanosomes. Formation of this complex requires the products of two genes that are part of a variant surface glycoprotein expression site, expression site-associated gene (ESAG) 6 (encoding a protein with GPI-anchor) and ESAG 7 (encoding a protein without any obvious membrane attachment). This complex can be precipitated by transferrin-Sepharose and by an antibody directed only against the ESAG 6 protein. Transfection of ESAG 6 or 7 alone did not result in transferrin binding. In the transfected trypanosomes, the products of ESAG 6 alone and the combination of ESAG 6 and 7 did not exclusively localize to the flagellar pocket, but were present all over the surface of the trypanosome. The reconstituted transferrin-binding complex also did not result in the uptake of transferrin. Additional proteins present in bloodstream trypanosomes, but not in sufficient amounts in insect form trypanosomes, may therefore be required for the correct routing of the transferrin-binding complex to the flagellar pocket, and for its rapid internalization after ligand binding.  相似文献   

5.
The role of parasite-specific antibody and the mononuclear phagocyte system (MPS) in immunity to the African trypanosomes was examined. For this study C57BL/10SnJ mice were infected with Trypanosoma rhodesiense clone LouTat 1.0. Infected mice were injected with 75Se-labeled LouTat 1.0 trypanosomes, and clearance from the blood upon reexposure was measured throughout the course of infection. Clearance of labeled organisms occurred only on or after day 5, which was the day of natural elimination of LouTat 1.0 from the blood. Clearance was dependent on a functional immune system and correlated with the appearance of antibody to the variant-specific surface antigen (VSSA) of the trypanosomes. The ability to clear trypanosomes was transferred to normal, uninfected mice by immune serum. Both the IgM and IgG fractions of immune serum mediated the clearance, and VSSA-specific IgM fractions were as efficient in clearing LouTat 1.0 as the IgG fractions. Normal levels of complement (C3) were not required for clearance. The liver was the primary organ of clearance, and the ability of the liver to sequester radiolabeled trypanosomes was not impaired in the terminal phase of the disease or by large numbers of circulating trypanosomes present representing different variant antigenic types (VAT). We conclude that in African trypanosomiasis the MPS is not depressed in its ability to clear trypanosomes of the infecting VAT at any time during the course of infection. The observed clearance function requires parasite-specific antibody but normal levels of C3.  相似文献   

6.
Interruption of mTOR-dependent signaling by rapamycin is known to stimulate autophagy, both in mammalian cells and in yeast. Because activation of AMPK also inhibits mTOR-dependent signaling one would expect stimulation of autophagy by AMPK activation. According to the literature, this is true for yeast but, unexpectedly, not for mammalian cells on the basis of the use of AICAR, a pharmacological activator of AMPK. In the present study, carried out with hepatocytes, HT-29 cells, and HeLa cells, we have reexamined the possible role of AMPK in the control of mammalian autophagy. Inhibition of AMPK activity by compound C or by transfection with a dominant negative form of AMPK almost completely inhibited autophagy. These results suggest that the inhibition of autophagy by AICAR is not related to its ability to activate AMPK. We conclude that in mammalian cells, as in yeast, AMPK is required for autophagy.  相似文献   

7.
Doxorubicin (Dox) is an effective chemotherapeutic agent, however, its use is limited by cardiotoxicity. The mechanisms causing cardiotoxicity have not been clearly elucidated, but known to involve, at least in part, oxidative stress, mitochondrial dysfunction and apoptosis. More recently, it has been suggested that dysregulation of autophagy may also play an important role in Dox-induced cardiotoxicity. Autophagy has dual functions. Under physiological conditions, autophagy is essential for optimal cellular function and survival by ridding the cell of damaged or unwanted proteins and organelles. Under pathological conditions, autophagy may be stimulated in order to protect the cell from stress stimuli or, alternatively, to contribute to cell death. Thus, appropriate regulation of autophagy can be a matter of life or death. The role of autophagy in Dox-induced cardiotoxicity has recently been explored, however, conflicting reports on the effects of Dox on autophagy and its role in cardiotoxicity exist. Most, but not all, of the studies conclude that Dox upregulates cardiac autophagy and contributes to the pathogenesis of Dox-induced toxicity. Dox may induce autophagy by suppressing the expression of GATA4 and/or S6K1, which may directly or indirectly regulate expression of essential autophagy genes such as Atg12, Atg5, Beclin1 and Bcl-2. Interestingly, the Dox-induced autophagic response may be species specific as Dox treatment has been shown to stimulate autophagy in rat models, but suppress autophagy in mouse models. Additional studies will elucidate this possibility.  相似文献   

8.
《Autophagy》2013,9(6):1137-1140
Autophagy is essential for cellular homeostasis and its dysfunction in human diseases has been implicated in the accumulation of misfolded protein and in cellular toxicity. We have recently shown impairment in autophagic flux in the lipid storage disorder, Niemann-Pick type C1 (NPC1) disease associated with abnormal cholesterol sequestration, where maturation of autophagosomes is impaired due to defective amphisome formation caused by failure in SNARE machinery. Abrogation of autophagy also causes cholesterol accumulation, suggesting that defective autophagic flux in NPC1 disease may act as a primary causative factor not only by imparting its deleterious effects, but also by increasing cholesterol load. However, cholesterol depletion treatment with HP-β-cyclodextrin impedes autophagy, whereas pharmacologically stimulating autophagy restores its function independent of amphisome formation. Of potential therapeutic relevance is that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may rescue both the cholesterol and autophagy defects in NPC1 disease.  相似文献   

9.
Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic components. There is no doubt that autophagy is very important to plant life, especially because plants are immobile and must survive in environmental extremes. Early studies of autophagy provided our first insights into the structural characteristics of the process in plants, but for a long time the molecular mechanisms and the physiological roles of autophagy were not understood. Genetic analyses of autophagy in the yeast Saccharomyces cerevisiae have greatly expanded our knowledge of the molecular aspects of autophagy in plants as well as in animals. Until recently our knowledge of plant autophagy was in its infancy compared with autophagy research in yeast and animals, but recent efforts by plant researchers have made many advances in our understanding of plant autophagy. Here I will introduce an overview of autophagy in plants, present current findings and discuss the physiological roles of self-degradation.  相似文献   

10.
Autophagy is essential for cellular homeostasis and its dysfunction in human diseases has been implicated in the accumulation of misfolded protein and in cellular toxicity. We have recently shown impairment in autophagic flux in the lipid storage disorder, Niemann-Pick type C1 (NPC1) disease associated with abnormal cholesterol sequestration, where maturation of autophagosomes is impaired due to defective amphisome formation caused by failure in SNARE machinery. Abrogation of autophagy also causes cholesterol accumulation, suggesting that defective autophagic flux in NPC1 disease may act as a primary causative factor not only by imparting its deleterious effects, but also by increasing cholesterol load. However, cholesterol depletion treatment with HP-β-cyclodextrin impedes autophagy, whereas pharmacologically stimulating autophagy restores its function independent of amphisome formation. Of potential therapeutic relevance is that a low dose of HP-β-cyclodextrin that does not perturb autophagy, coupled with an autophagy inducer, may rescue both the cholesterol and autophagy defects in NPC1 disease.  相似文献   

11.
Autophagy is a central lysosomal degradation pathway required for maintaining cellular homeostasis and its dysfunction is associated with numerous human diseases. To identify players in autophagy, we tested w1200 chemically induced mutations on the X chromosome in Drosophila fat body clones and discovered that shibire(shi) plays an essential role in starvation-induced autophagy. shi encodes a dynamin protein required for fission of clathrin-coated vesicles from the plasma membrane during endocytosis. We showed that Shi is dispensable for autophagy initiation and autophagosomeelysosome fusion, but required for lysosomal/autolysosomal acidification. We also showed that other endocytic core machinery components like clathrin and AP2 play similar but not identical roles in regulating autophagy and lysosomal function as dynamin. Previous studies suggested that dynamin directly regulates autophagosome formation and autophagic lysosome reformation(ALR) through its excision activity. Here, we provide evidence that dynamin also regulates autophagy indirectly by regulating lysosomal function.  相似文献   

12.
Autophagy is a cellular response to adverse environment and stress, but its significance in cell survival is not always clear. Here we show that autophagy could be induced in the mammalian cells by chemicals, such as A23187, tunicamycin, thapsigargin, and brefeldin A, that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-induced autophagy is important for clearing polyubiquitinated protein aggregates and for reducing cellular vacuolization in HCT116 colon cancer cells and DU145 prostate cancer cells, thus mitigating endoplasmic reticulum stress and protecting against cell death. In contrast, autophagy induced by the same chemicals does not confer protection in a normal human colon cell line and in the non-transformed murine embryonic fibroblasts but rather contributes to cell death. Thus the impact of autophagy on cell survival during endoplasmic reticulum stress is likely contingent on the status of cells, which could be explored for tumor-specific therapy.  相似文献   

13.
14.
GPEET procyclin is a major glycosylphosphatidylinositol-anchored protein of procyclic (insect stage) trypanosomes in culture and is heavily phosphorylated in the GPEET pentapeptide repeat. The phosphorylation reaction is a late event and occurs during maturation and transport of GPEET or on the parasite surface by an ecto-protein kinase. Initial biochemical characterization of the GPEET kinase activity now shows that it depends on bivalent cations for maximal activity, is stimulated by sulfhydryl group reagents, and is specific for ATP as phosphoryl donor. No kinase activity is detected in bloodstream form trypanosomes in culture, whereas strong phosphorylation is observed in early procyclic forms. In addition, the GPEET kinase activity is absent from procyclic trypanosomes that have repressed GPEET synthesis but can be induced in these same stocks by conditions, which also induce GPEET expression. However, the presence of an active kinase does not depend on the presence of (functional) GPEET because it can be detected in parasites expressing a non-phosphorylatable GPEET mutant protein and in procyclin null mutant trypanosomes. Interestingly, the presence of the glycosylphosphatidylinositol lipid moiety seems necessary for GPEET to become phosphorylated. Together, the results demonstrate that GPEET and its kinase are expressed during the same life cycle stages and that factors that induce the expression of GPEET in vitro also induce the expression of the GPEET kinase.  相似文献   

15.
Role and regulation of starvation-induced autophagy in the Drosophila fat body   总被引:10,自引:0,他引:10  
In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.  相似文献   

16.
Protozoan Kinetoplastida, a group that comprises the pathogenic Trypanosoma brucei, compartmentalize several metabolic systems such as the major part of the glycolytic pathway, in multiple peroxisome-like organelles, designated glycosomes. Trypanosomes have a complicated life cycle, involving two major, distinct stages living in the mammalian bloodstream and several stages inhabiting different body parts of the tsetse fly. Previous studies on non-differentiating trypanosomes have shown that the metabolism and enzymatic contents of glycosomes in bloodstream-form and cultured procyclic cells, representative of the stage living in the insect's midgut, differ considerably. In this study, the morphology of glycosomes and their position relative to the lysosome were followed, as were the levels of some glycosomal enzymes and markers for other subcellular compartments, during the differentiation from bloodstream-form to procyclic trypanosomes. Our studies revealed a small tendency of glycosomes to associate with the lysosome when a population of long-slender bloodstream forms differentiated into short-stumpy forms which are pre-adapted to live in the fly. The same phenomenon was observed during the short-stumpy to procyclic transformation, but then the process was fast and many more glycosomes were associated with the dramatically enlarged degradation organelle. The observations suggested an efficient glycosome turnover involving autophagy. Changes observed in the levels of marker enzymes are consistent with the notion that, during differentiation, glycosomes with enzymatic contents specific for the old life-cycle stage are degraded and new glycosomes with different contents are synthesized, causing that the metabolic repertoire of trypanosomes is, at each stage, optimally adapted to the environmental conditions encountered.  相似文献   

17.
Ancient autophagy pathways are emerging as key defense modules in host eukaryotic cells against microbial pathogens. Apart from actively eliminating intracellular intruders, autophagy is also responsible for cell survival, for example by reducing the deleterious effects of endoplasmic reticulum stress. At the same time, autophagy can contribute to cellular suicide. The concurrent engagement of autophagy in these processes during infection may sometimes mask its contribution to differing pro-survival and pro-death decisions. The importance of autophagy in innate immunity in mammals is well documented, but how autophagy contributes to plant innate immunity and cell death is not that clear. A few research reports have appeared recently to shed light on the roles of autophagy in plant-pathogen interactions and in disease-associated host cell death. We present a first attempt to reconcile the results of this research.  相似文献   

18.
《Autophagy》2013,9(4):551-554
We have recently demonstrated that some neuropeptides act as potent endogenous antiparasitic factors. These molecules kill trypanosomes through complex mechanisms that are difficult to escape by the parasite. Neuropeptides are endocytosed by the parasite, disrupt lysosome integrity, and alter the cellular compartmentalization of glycolytic enzymes. This promotes an energetic metabolism failure that initiates an autophagic-like cell death. The concept of autophagy is new for parasites and was mainly associated with differentiation or stress events. Here, we propose that this form of programmed cell death probably co-evolved with parasite-induced-neuropeptides after host infection, as a survival strategy favoring parasite transmission for a longer time by keeping the host alive.  相似文献   

19.
Autophagy is an early cellular event during acute pancreatitis, a disease defined as pancreas self-digestion. The Vacuole Membrane Protein 1 (VMP1) is a trans-membrane protein highly activated in acinar cells early during pancreatitis-induced autophagy and it remains in the autophagosomal membrane. We have shown that VMP1 expression is able to trigger autophagy in mammalian cells, even under nutrient-replete conditions. VMP1 is induced by autophagy stimuli and its expression is required for autophagosome development. VMP1 interacts with Beclin 1 through its hydrophilic C-terminal region, which we named Atg domain, as it is essential for autophagy. Remarkably, VMP1 pancreas-specific transgenic expression in mice promotes autophagosome formation. Most of the autophagy-related proteins were described in yeast or have a yeast homologue. VMP1 does not have any known homologue in yeast but its expression is required to start the autophagic process in mammalian cells. These findings support the hypothesis that mammalian cells may regulate autophagy in a different way. We propose that VMP1 is a novel autophagy related trans-membrane protein, which may lead the way in the search for alternative mechanisms of autophagosome formation.  相似文献   

20.
c-myc induces autophagy in rat 3Y1 fibroblast cells   总被引:3,自引:0,他引:3  
The proto-oncogene c-myc is a multifunctional gene that regulates cell division, cell growth, and apoptosis. Here we report a new function of c-myc: induction of autophagy. Autophagy is a bulk degradation system for intracellular proteins. Autophagy proceeds with characteristic morphologies, which begins with the formation of a double-membrane structure called the autophagosome surrounding a portion of the cytoplasm, after which its outer membrane then fuses with the lysosomal membrane to become an autolysosome. Autophagosomes and autolysosomes are generally called autophagic vacuoles. When c-Myc protein was overexpressed in rat 3Y1 fibroblasts or when the chimeric protein c-MycER was activated by estrogen, the number of autophagic vacuoles in cells increased significantly. The formation of autophagic vacuoles induced by c-Myc was completely blocked by a specific inhibitor of autophagosome formation, 3-methyladenine. A c-Myc mutant lacking Myc Box II induced neither apoptosis nor oncogenic transformation, but still stimulated autophagy. An inhibitor of caspases suppressed apoptosis but not autophagy. These results suggest that the autophagy caused by c-myc is not due to the apoptosis or tumorigenesis induced by c-myc. Taken together, our results suggest that the induction of autophagy is a novel function of c-myc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号