首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background aimsTumor antigen-specific cytotoxic T lymphocytes (CTL) have been used in the treatment of human cancer, including leukemia. Several studies have established PR1 peptide, an HLA-A2.1-restricted peptide derived from proteinase 3 (P3), as a human leukemia-associated antigen. PR1-specific CTL elicited in vitro from healthy donors have been shown to lyse P3-expressing AML cells from patients. We investigated whether PR1-CTL can be adoptively transferred into NOD/SCID mice to eliminate human leukemia cells.MethodsPR1-CTL were generated in bulk culture from peripheral blood mononuclear cells (PBMC) stimulated with autologous dendritic cells. Human acute myeloid leukemia (AML) patient samples were injected and engrafted in murine bone marrow at 2 weeks post-transfer.ResultsFollowing adoptive transfer, bone marrow aspirate from mice that received AML alone had 72–88% blasts in a hypercellular marrow, whereas mice that received AML plus PR1-CTL co-infusion had normal hematopoietic elements and only 3–18% blasts in a hypocellular marrow. The PR1-CTL persisted in the bone marrow and liver and maintained a CD45RA? CD28+ effector phenotype.ConclusionsWe found that adoptive transfer of PR1-CTL generated in vitro is associated with reduced AML cells in NOD/SCID mice. PR1-CTL can migrate to the sites of disease and maintain their capacity to kill the AML cells. The surface phenotype of PR1-CTL was consistent with their trafficking pattern in both vascular and end-organ tissues.  相似文献   

2.
Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC–MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC–MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1–2 mm2) of UC membrane and Wharton’s jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic–antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC–MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC–MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC–MSCs cultured in DMEM/F12 plus 1 % antibiotic–antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC–MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC–MSCs maintained the expression of the oncogenes Nanog and Oct4 after long term culture but failed to transfer tumors in NOD/SCID mice. Replacing FBS with aPRP in the culture medium for UC tissues allowed the successful isolation of UC–MSCs that satisfy the minimum standards for clinical applications.  相似文献   

3.
Background aimsGraft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation caused by donor T cells reacting against host tissues. Previous studies have suggested that mesenchymal stromal cells (MSCs) could exert potent immunosuppressive effects.MethodsThe ability of human bone marrow derived MSCs to prevent xenogeneic GVHD in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice and in NOD/SCID/interleukin-2Rγ(null) (NSG) mice transplanted with human peripheral blood mononuclear cells (PBMCs) was assessed.ResultsInjection of 200 × 106 human PBMCs intraperitoneally (IP) into sub-lethally (3.0 Gy) irradiated NOD/SCID mice also given anti-asialo GM1 antibodies IP 1 day prior and 8 days after transplantation induced lethal xenogeneic GVHD in all tested mice. Co-injection of 2 × 106 MSCs IP on day 0 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs. Similarly, injection of 30 × 106 human PBMCs IP into sub-lethally (2.5 Gy) irradiated NSG mice induced a lethal xenogeneic GVHD in all tested mice. Injection of 3 × 106 MSCs IP on days 0, 7, 14 and 21 did not prevent lethal xenogeneic GVHD induced by injection of human PBMCs.ConclusionsInjection of MSCs did not prevent xenogeneic GVHD in these two humanized mice models.  相似文献   

4.
Acute myeloid leukemia (AML) is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.  相似文献   

5.
LukS-PV, a component of Panton-Valentine leukocidin (PVL) secreted by Staphylococcus aureus, has been shown to inhibit proliferation and induce apoptosis in acute myeloid leukemia (AML) THP-1 cells. Here we investigated anti-leukemia activities of LukS-PV in HL-60 cells, using in vitro assays to assess the ability of LukS-PV to mediate cell viability, apoptosis and differentiation; and developing a Severe Combined Immunodeficiency (SCID) mouse model of disseminated AML with the HL-60 cells to examine in vivo anti-leukemia activity. LukS-PV inhibited viability and induced differentiation and apoptosis in the HL-60 AML cell line. In the SCID mice, LukS-PV potently inhibited tumor growth, decreased tumor cell infiltration into peripheral blood and tissues, and significantly increased mean survival time. No severe adverse effects, such as death, weight loss, or pathological changes in livers or spleens were observed in the toxicity test group. These results indicate that LukS-PV may be a novel and effective chemotherapeutic agent against AML.  相似文献   

6.
BackgroundThe dried heartwood of Caesalpinia sappan L. is traditionally prescribed in the formula of traditional Chinese medicine (TCM) for the treatment of acute myeloid leukemia (AML), while nothing is yet known of the active fractions and the underlying mechanisms.PurposeThis study aims to investigate the effect of the ethyl acetate extract of the dried heartwood of Caesalpinia sappan L. (C-A-E) on induction of apoptosis and promotion of differentiation in vitro and anti-AML activity in vivo.Study design/methodsThe aqueous extract was sequentially separated with solvents of increasing polarity and the active fraction was determined through the inhibition potency. The inhibition of the active fraction on cell viability, proliferation and colony formation was performed in different AML cells. Induction of apoptosis and the promotion of differentiation were further determined. Then, the level of the reactive oxygen species (ROS) and its potential role were assessed. Finally, anti-AML activity was evaluated in NOD/SCID mice.ResultsC-A-E exhibited the highest inhibition on the cell viability of HL-60 cells. Meanwhile, C-A-E significantly suppressed the proliferation and the colony formation ability of HL-60 and Kasumi-1 cells. Moreover, C-A-E significantly induced the apoptosis, which was partially reversed by Z-VAD-FMK. C-A-E also reduced the level of mitochondrial membrane potential, promoted the release of cytochrome C, decreased the Bcl-2/Bax ratio, and promoted the cleavage of caspase-9 and -3. In addition, Mdivi-1 (mitochondrial fission blocker) remarkably reduced the apoptosis caused by C-A-E. Meanwhile, C-A-E also induced the expression of Mff and Fis1 and increased the location of Drp1 in mitochondria. Furthermore, C-A-E obviously promoted the differentiation of AML cells characterized by the typic morphological changes, the increased NBT positive cells, as well as the increased CD11b and CD14 levels. Notably, C-A-E significantly enhanced the intracellular ROS level. Moreimportantly, C-A-E-mediated apoptosis and differentiation of HL-60 cells was significantly mitigated by NAC. Additionally, C-A-E also exhibited an obvious anti-AML effect in NOD/SCID mice with the injection of HL-60 cells.ConclusionsC-A-E exhibited an inhibitory effect on AML cells by inducing mitochondrial apoptosis and promoting differentiation, both of which were highly correlated to the activation of ROS.  相似文献   

7.
8.
RAS mutations are frequently found among acute myeloid leukemia patients (AML), generating a constitutively active signaling protein changing cellular proliferation, differentiation and apoptosis. We have previously shown that treatment of AML patients with high-dose cytarabine is preferentially beneficial for those harboring oncogenic RAS. On the basis of a murine AML cell culture model, we ascribed this effect to a RAS-driven, p53-dependent induction of differentiation. Hence, in this study we sought to confirm the correlation between RAS status and differentiation of primary blasts obtained from AML patients. The gene expression signature of AML blasts with oncogenic NRAS indeed corresponded to a more mature profile compared to blasts with wildtype RAS, as demonstrated by gene set enrichment analysis (GSEA) and real-time PCR analysis of myeloid ecotropic viral integration site 1 homolog (MEIS1) in a unique cohort of AML patients. In addition, in vitro cell culture experiments with established cell lines and a second set of primary AML cells showed that oncogenic NRAS mutations predisposed cells to cytarabine (AraC) driven differentiation. Taken together, our findings show that AML with inv(16) and NRAS mutation have a differentiation gene signature, supporting the notion that NRAS mutation may predispose leukemic cells to AraC induced differentiation. We therefore suggest that promotion of differentiation pathways by specific genetic alterations could explain the superior treatment outcome after therapy in some AML patient subgroups. Whether a differentiation gene expression status may generally predict for a superior treatment outcome in AML needs to be addressed in future studies.  相似文献   

9.
In the present study, we investigated whether mesenchymal stem cells (MSCs) overexpressing integrin-linked kinase (ILK) might regulate ventricular remodeling and cardiac function in a porcine myocardial infarction model. ILK-modified MSCs (ILK-MSCs) (n = 8), MSCs (n = 8) or placebo (n = 8) were injected into peri-infarct myocardium 7 days after ligation of the left anterior descending coronary artery. ILK expression was confirmed by immunofluorescence, real-time PCR, Western blot analysis, and flow cytometry. In vitro assays indicated increased proliferation and reduced apoptosis of MSCs due to overexpression of ILK. Echocardiographic, single-photon emission computed tomography and positron emission tomography analyses demonstrated preserved cardiac function and myocardial perfusion. Reduced fibrosis, increased cardiomyocyte proliferation, and enhanced angiogenesis were observed in the ILK-MSC group. Reduced apoptosis, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis, was also noted. In conclusion, ILK promotes MSC proliferation and suppresses apoptosis. ILK-MSC transplantation improves ventricular remodeling and cardiac function in pigs after MI. It is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of post-infarct remodeling and subsequent heart failure.  相似文献   

10.
The proteasome inhibitor bortezomib simultaneously renders tumor cells sensitive to killing by natural killer (NK) cells and resistant to killing by tumor-specific T cells. Here, we show that b-AP15, a novel inhibitor of proteasome deubiquitinating activity, sensitizes tumors to both NK and T cell-mediated killing. Exposure to b-AP15 significantly increased the susceptibility of tumor cell lines of various origins to NK (p < 0.0002) and T cell (p = 0.02)-mediated cytotoxicity. Treatment with b-AP15 resulted in increased tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2 expression (p = 0.03) and decreased cFLIP expression in tumor cells in vitro. In tumor-bearing SCID/Beige mice, treatment with b-AP15 followed by infusion of either human NK cells or tumor-specific T cells resulted in a significantly delayed tumor progression compared with mice treated with NK cells (p = 0.006), T cells (p < 0.0001) or b-AP15 alone (p = 0.003). Combined infusion of NK and T cells in tumor-bearing BALB/c mice following treatment with b-AP15 resulted in a significantly prolonged long-term survival compared with mice treated with b-AP15 and NK or T cells (p ≤ 0.01). Our findings show that b-AP15-induced sensitization to TRAIL-mediated apoptosis could be used as a novel strategy to augment the anticancer effects of adoptively infused NK and T cells in patients with cancer.  相似文献   

11.
As a key encoding protein gene of MRN (MRE11-RAD50-NBS1) complex, NBS1 plays a crucial role in maintaining genomic stability and preventing cell apoptosis, inflammation and tumorgenesis. Single nucleotide polymorphisms (rs2735383 and rs1805794) in NBS1 have been frequently studied in some cancers with discordant results in previous case–control studies. However, the relationship between these two functional polymorphisms and the susceptibility to acute myeloid leukemia (AML) in Chinese population has not been investigated. We performed a case–control study with 428 patients and 600 controls to detect the association between the two polymorphisms of NBS1 and the risk of AML in a Chinese population. The polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method was carried out to determine the genotypes of potential functional SNPs in NBS1 gene. The results showed that compared with the homozygous carriers rs1805794CC, rs1805794GC genotype was significantly associated with decreased risk of AML in total subjects (adjusted odds ratio (OR) = 0.50; 95 % CI = 0.37–0.67), the risk decreased even further in those carrying rs1805794GG genotype (OR = 0.23; 95 % CI = 0.16–0.34). No significant association was found between rs2735383C>G polymorphism and the risk of AML (OR = 0.93; 95 % CI = 0.71–1.22 for GC; OR = 0.78; 95 % CI = 0.53–1.13 for CC, P = 0.152). These findings indicated that rs1805794G/C polymorphism in NBS1 may play a protective role in mediating the risk of AML.  相似文献   

12.
13.
Acute myeloid leukemia (AML) is the most common acute leukemia diagnosed in adults. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a significant role in pathogenesis and autoimmune diseases. The major function of MIF is to promote the cell proliferation, migration, and invasion. The aim of the present study is to identify the association between MIF-173 (rs755662) single nucleotide polymorphism (SNP) and AML in Taiwanese population. DNA samples extracted from 256 AML patients and 256 healthy controls were investigated using polymerase chain reaction followed by restriction fragment length polymorphism analysis. The association between MIF-173 SNP genotype and AML patients were assessed with SPSS software. The results show that the GC genotype of MIF-173 SNP is significantly higher in AML patients than in the healthy controls (OR 1.58, 95 % CI 1.06, P = 0.034). Carrier genotypes GC and CC may be a causative factor for AML cancer (OR 1.39, 95 % CI 0.95, P = 0.085). White blood cell count (103/µl) were significantly associated with AML MIF-173 polymorphism patients (P = 0.002). Our results in this study provide the first evidence that the MIF-173 polymorphism is associated with AML. MIF is a potential biomarker for development of AML cancer in male adult in Taiwanese population. Further validations in other populations are warranted.  相似文献   

14.
Acute myeloid leukemia (AML) is a hematological malignancy with a low cure rate, especially in the elderly. Previous studies have shown that long non-coding RNA (lncRNA) may be an important factor in the pathogenesis of hematological malignancies, including acute myeloid leukemia (AML). However, the biological roles and clinical significances of most lncRNAs in AML are not fully understood. LncRNA CD27 Antisense RNA 1 (CD27-AS1), as a member of lncRNA family, has rare reports on its function. In present study, we found that the expression of CD27-AS1 examined by quantitative real-time PCR was markedly increased in the AML patients (N = 40) compared with healthy volunteers (N = 40). The overall survival time was significantly shorter in patients with higher CD27-AS1 expression than that in patients with lower CD27-AS1 (P < 0.01). Furthermore, downregulation of CD27-AS1 in AML cells suppressed proliferative ability, arrested cell cycle in G0/G1 phase, and induced apoptosis. However, CD27-AS1 overexpression further enhanced the malignant phenotype of AML cells. Additionally, CD27-AS1 was proved to increase PBX3 expression through sponging miR-224-5p. CD27-AS1 knockdown blocked the MAPK signaling through PBX3 silencing and further inhibited the cell growth of AML cells. Taken together, we demonstrate that CD27-AS1 may be a potential prognostic biomarker of AML, and our finding also provides a new insight for non-coding RNA-based therapeutic intervention of AML.Subject terms: Growth factor signalling, Oncogenesis  相似文献   

15.
TNFα signaling can promote apoptosis or a regulated form of necrosis. ARC (apoptosis repressor with CARD (caspase recruitment domain)) is an endogenous inhibitor of apoptosis that antagonizes both the extrinsic (death receptor) and intrinsic (mitochondrial/ER) apoptosis pathways. We discovered that ARC blocks not only apoptosis but also necrosis. TNFα-induced necrosis was abrogated by overexpression of wild-type ARC but not by a CARD mutant that is also defective for inhibition of apoptosis. Conversely, knockdown of ARC exacerbated TNFα-induced necrosis, an effect that was rescued by reconstitution with wild-type, but not CARD-defective, ARC. Similarly, depletion of ARC in vivo exacerbated necrosis caused by infection with vaccinia virus, which elicits severe tissue damage through this pathway, and sensitized mice to TNFα-induced systemic inflammatory response syndrome. The mechanism underlying these effects is an interaction of ARC with TNF receptor 1 that interferes with recruitment of RIP1, a critical mediator of TNFα-induced regulated necrosis. These findings extend the role of ARC from an apoptosis inhibitor to a regulator of the TNFα pathway and an inhibitor of TNFα-mediated regulated necrosis.  相似文献   

16.
17.
18.
Acute myeloid leukemia (AML) is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号