首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human neutrophils underwent spontaneous apoptosis, which was accompanied with proteasome-mediated degradation of Mcl-1 and X-linked inhibitor of apoptosis (XIAP). Calpain inhibitors (PD150606 and N-acetyl-Leu-Leu-Nle-CHO) prevented spontaneous neutrophil apoptosis and degradation of Mcl-1 and XIAP, and the effects of calpain inhibitors on neutrophils were resistant to cycloheximide. Calpain inhibitors induced protein kinase A (PKA) activation, which was unaccompanied with an increase in intracellular cyclic AMP. Calpain inhibition-mediated delayed neutrophil apoptosis, stabilization of Mcl-1 and XIAP, and phosphorylation of PKA substrates were suppressed by H-89 (specific PKA inhibitor). These findings suggest that calpain inhibition delays neutrophil apoptosis via cyclic AMP-independent activation of PKA and PKA-mediated stabilization of Mcl-1 and XIAP.  相似文献   

2.
Addition of NAD+ to purified potato (Solanum tuberosum L.) mitochondria respiring α-ketoglutarate and malate in the presence of the electron transport inhibitor rotenone, stimulated O2 uptake. This stimulation was prevented by incubating mitochondria with N-4-azido-2-nitrophenyl-aminobutyryl-NAD+ (NAP4-NAD+), an inhibitor of NAD+ uptake, but not by 1 mm EGTA, an inhibitor of external NADH oxidation. NAD+-stimulated malate-cytochrome c reductase activity, and reduction of added NAD+ by intact mitochondria, could be duplicated by rupturing the mitochondria and adding a small quantity to the cuvette. The extent of external NAD+ reduction was correlated with the amount of extra mitochondrial malate dehydrogenase present. Malate oxidation by potato mitochondria depleted of endogenous NAD+ by storing on ice for 72 hours, was completely dependent on added NAD+, and the effect of NAD+ on these mitochondria was prevented by incubating them with NAP4-NAD+. External NAD+ reduction by these mitochondria was not affected by NAP4-NAD+. We conclude that all effects of exogenous NAD+ on plant mitochondrial respiration can be attributed to net uptake of the NAD+ into the matrix space.  相似文献   

3.
Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways.  相似文献   

4.
Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils.We demonstrate that apoptosis in highly purified neutrophils can be almost completely abrogated by caspase inhibition with the highly effective di-peptide caspase inhibitor, Q-VD.OPh, confirming the caspase dependence of neutrophil apoptosis. Effective caspase inhibition does not prevent the observed fall in Mcl-1 levels early in ultrapure neutrophil culture, suggesting that this fall in Mcl-1 levels is not a consequence of neutrophil apoptosis. However, at later timepoints, declines in Mcl-1 can be reversed with effective caspase inhibition, suggesting that Mcl-1 is both an upstream regulator and a downstream target of caspase activity in human neutrophils.  相似文献   

5.
R-(−)-gossypol acetic acid (AT-101) is a natural cottonseed product that exhibits anticancer activity. However, the molecular mechanism behind the antileukemic activity of AT-101 has not been well characterized. In this study, we investigated how AT-101 induces apoptosis in human leukemia cells. Exposure to AT-101 significantly increased apoptosis in both human leukemia cell lines and primary human leukemia cells. This increase was accompanied by the activation of caspases, cytochrome c release, Bcl2-associated X protein (Bax) translocation, myeloid cell leukemia-1 (Mcl-1) downregulation, Bcl-2-associated death promoter (Bad) dephosphorylation, Akt inactivation, and RhoA/Rho-associated coiled-coil containing protein kinase 1/phosphatase and tensin homolog (RhoA/ROCK1/PTEN) activation. RhoA, rather than caspase-3 cleavage, mediated the cleavage/activation of ROCK1 that AT-101 induced. Inhibiting RhoA and ROCK1 activation by C3 exoenzyme (C3) and Y27632, respectively, attenuated the ROCK1 cleavage/activation, PTEN activity, Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and apoptosis mediated by AT-101. Knocking down ROCK1 expression using a ROCK1-specific siRNA also significantly abrogated AT-101-mediated apoptosis. Constitutively active Akt prevented the AT-101-induced Mcl-1 downregulation, Bad dephosphorylation, and apoptosis. Conversely, AT-101 lethality was potentiated by the phosphatidylinositol 3-kinase inhibitor LY294002. In vivo, the tumor growth inhibition caused by AT-101 was also associated with RhoA/ROCK1/PTEN activation and Akt inactivation in a mouse leukemia xenograft model. Collectively, these findings suggest that AT-101 may preferentially induce apoptosis in leukemia cells by interrupting the RhoA/ROCK1/PTEN pathway, leading to Akt inactivation, Mcl-1 downregulation, Bad dephosphorylation, and Bax translocation, which culminate in mitochondrial injury and apoptosis.  相似文献   

6.
Aberrant levels of reactive oxygen species (ROS) rapidly generated from NADPH oxidase (NOX) activation can be cytotoxic due to activating pro-apoptotic signals. However, ROS also induce pro-survival autophagy through the engulfment of damaged mitochondria. This study is aimed at investigating the cytoprotective role of albumin against NOX/ROS-induced autophagy and apoptosis under serum starvation. Serum starvation induced apoptosis following a myeloid cell leukemia sequence 1 (Mcl-1)/Bax imbalance, loss of the mitochondrial transmembrane potential, and caspase activation accompanied by pro-survival autophagy following canonical inhibition of mammalian target of rapamycin complex 1 (mTORC1). Aberrant ROS generation, initially occurring through NOX, facilitated mitochondrial damage, autophagy, and apoptosis. Autophagy additionally regulated the accumulation of ROS-generating mitochondria. NOX/ROS permitted p38 mitogen-activated protein kinase (p38 MAPK)-regulated mitochondrial apoptosis, accompanied by non-canonical induction of autophagy. In addition, activation of glycogen synthase kinase (GSK)-3β by NOX/ROS-inactivated Akt facilitated a decrease in Mcl-1, followed by mitochondrial apoptosis as well as autophagy. Restoring albumin conferred an anti-oxidative effect against serum starvation-deregulated NOX, p38 MAPK, and Akt/GSK-3β/Mcl-1/caspase-3 signaling. Albumin also prevented autophagy by sustaining mTORC1. These results indicate an anti-oxidative role for albumin via preventing NOX/ROS-mediated mitochondrial signaling to stimulate apoptosis as well as autophagy. Autophagy, initially induced by canonical inhibition of mTORC1 and enhanced by non-canonical mitochondrial damage, acts physically as a pro-survival mechanism.  相似文献   

7.
Mcl-1 full-length (Mcl-11-350), a tightly regulated protein, plays an important role in protecting cells against apoptosis. Cleavage of Mcl-1 at Asp127 by caspase (Mcl-1C1) contributes to the regulation of Mcl-1 expression, but its pro-apoptotic function remains controversial. Here, we reported that Mcl-1128-350 expression induced caspase-dependent apoptosis. We demonstrated that Mcl-1128-350 but not Mcl-11-350 interacts with Bax. This interaction required an intact BH3 Mcl-1128-350 domain and leads to Bax activation and translocation to mitochondria. The silencing of Bax, but not of Bak, prevented Mcl-1128-350 induced apoptosis. In conclusion, Mcl-1128-350 exerts a pro-apoptotic function governed by its capacity to interact with Bax.

Structured summary

MINT-7306752: Mcl-1 (uniprotkb:Q07820) physically interacts (MI:0915) with BAK (uniprotkb:Q16611) by anti tag coimmunoprecipitation (MI:0007)MINT-7306728: Mcl-1 (uniprotkb:Q07820) physically interacts (MI:0914) with BAX (uniprotkb:Q07812) and BAK (uniprotkb:Q16611) by anti tag coimmunoprecipitation (MI:0007)MINT-7307171: F1 ATPase (uniprotkb:Q5TC12), Mcl-1 (uniprotkb:Q07820) and BAX (uniprotkb:Q07812) colocalize (MI:0403) by cosedimentation through density gradients (MI:0029)  相似文献   

8.
Although the ability of bioactive lipid sphingosine-1-phosphate (S1P) to positively regulate anti-apoptotic/pro-survival responses by binding to S1P1 is well known, the molecular mechanisms remain unclear. Here we demonstrate that expression of S1P1 renders CCL39 lung fibroblasts resistant to apoptosis following growth factor withdrawal. Resistance to apoptosis was associated with attenuated accumulation of pro-apoptotic BH3-only protein Bim. However, although blockade of extracellular signal-regulated kinase (ERK) activation could reverse S1P1-mediated suppression of Bim accumulation, inhibition of caspase-3 cleavage was unaffected. Instead S1P1-mediated inhibition of caspase-3 cleavage was reversed by inhibition of phosphatidylinositol-3-kinase (PI3K) and protein kinase C (PKC), which had no effect on S1P1 regulation of Bim. However, S1P1 suppression of caspase-3 was associated with increased expression of anti-apoptotic protein Mcl-1, the expression of which was also reduced by inhibition of PI3K and PKC. A role for the induction of Mcl-1 in regulating endogenous S1P receptor-dependent pro-survival responses in human umbilical vein endothelial cells was confirmed using S1P receptor agonist FTY720-phosphate (FTY720P). FTY720P induced a transient accumulation of Mcl-1 that was associated with a delayed onset of caspase-3 cleavage following growth factor withdrawal, whereas Mcl-1 knockdown was sufficient to enhance caspase-3 cleavage even in the presence of FTY720P. Consistent with a pro-survival role of S1P1 in disease, analysis of tissue microarrays from ER+ breast cancer patients revealed a significant correlation between S1P1 expression and tumour cell survival. In these tumours, S1P1 expression and cancer cell survival were correlated with increased activation of ERK, but not the PI3K/PKB pathway. In summary, pro-survival/anti-apoptotic signalling from S1P1 is intimately linked to its ability to promote the accumulation of pro-survival protein Mcl-1 and downregulation of pro-apoptotic BH3-only protein Bim via distinct signalling pathways. However, the functional importance of each pathway is dependent on the specific cellular context.  相似文献   

9.
Neutrophils are abundant, short-lived leukocytes that play a key role in the immune defense against microbial infections. These cells die by apoptosis following activation and uptake of microbes and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter a pathogen. Adiponectin exerts anti-inflammatory effects on neutrophil antimicrobial functions, but whether this abundant adipokine influences neutrophil apoptosis is unknown. Here we report that adiponectin in the physiological range (1–10 μg/ml) reduced apoptosis in resting neutrophils, decreasing caspase-3 cleavage and maintaining Mcl-1 expression by stabilizing this anti-apoptotic protein. We show that adiponectin induced phosphorylation of AMP-activated kinase (AMPK), protein kinase B (PKB), extracellular signal-regulated kinase (ERK 1/2) and p38 mitogen activated protein kinase (MAPK). Pharmacological inhibition of AMPK, PKB and ERK 1/2 ablated the pro-survival effects of adiponectin and treatment of neutrophils with an AMPK specific activator (AICAR) and AMPK inhibitor (compound C) respectively decreased and increased apoptosis. Finally, activation of AMPK by AICAR or adiponectin also decreased ceramide accumulation in the neutrophil cell membrane, a process involved in the early stages of spontaneous apoptosis, giving another possible mechanism downstream of AMPK activation for the inhibition of neutrophil apoptosis.  相似文献   

10.
Apoptosis mediated by Bax or Bak is usually thought to be triggered by BH3-only members of the Bcl-2 protein family. BH3-only proteins can directly bind to and activate Bax or Bak, or indirectly activate them by binding to anti-apoptotic Bcl-2 family members, thereby relieving their inhibition of Bax and Bak. Here we describe a third way of activation of Bax/Bak dependent apoptosis that does not require triggering by multiple BH3-only proteins. In factor dependent myeloid (FDM) cell lines, cycloheximide induced apoptosis by a Bax/Bak dependent mechanism, because Bax-/-Bak-/- lines were profoundly resistant, whereas FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Addition of cycloheximide led to the rapid loss of Mcl-1 but did not affect the expression of other Bcl-2 family proteins. In support of these findings, similar results were observed by treating FDM cells with the CDK inhibitor, roscovitine. Roscovitine reduced Mcl-1 abundance and caused Bax/Bak dependent cell death, yet FDM lines lacking one or more genes for BH3-only proteins remained highly sensitive. Therefore Bax/Bak dependent apoptosis can be regulated by the abundance of anti-apoptotic Bcl-2 family members such as Mcl-1, independently of several known BH3-only proteins.  相似文献   

11.
Pancreatic β-cell apoptosis is a key feature of diabetes mellitus and the mitochondrial pathway of apoptosis is a major mediator of β-cell death. We presently evaluated the role of the myeloid cell leukemia sequence 1 (Mcl-1), an antiapoptotic protein of the Bcl-2 family, in β-cells following exposure to well-defined β-cell death effectors, for example, pro-inflammatory cytokines, palmitate and chemical endoplasmic reticulum (ER) stressors. All cytotoxic stresses rapidly and preferentially decreased Mcl-1 protein expression as compared with the late effect observed on the other antiapoptotic proteins, Bcl-2 and Bcl-xL. This was due to ER stress-mediated inhibition of translation through eIF2α phosphorylation for palmitate and ER stressors and through the combined action of translation inhibition and JNK activation for cytokines. Knocking down Mcl-1 using small interference RNAs increased apoptosis and caspase-3 cleavage induced by cytokines, palmitate or thapsigargin, whereas Mcl-1 overexpression partly prevented Bax translocation to the mitochondria, cytochrome c release, caspase-3 cleavage and apoptosis induced by the β-cell death effectors. Altogether, our data suggest that Mcl-1 downregulation is a crucial event leading to β-cell apoptosis and provide new insights into the mechanisms linking ER stress and the mitochondrial intrinsic pathway of apoptosis. Mcl-1 is therefore an attractive target for the design of new strategies in the treatment of diabetes.  相似文献   

12.
A mechanism by which intact potato (Solanum tuberosum) mitochondria may regulate the matrix NAD content was studied in vitro. If mitochondria were incubated with NAD+ at 25°C in 0.3 molar mannitol, 10 millimolar phosphate buffer (pH 7.4), 5 millimolar MgCl2, and 5 millimolar α-ketoglutarate, the NAD pool size increased with time. In the presence of uncouplers, net uptake was not only inhibited, but NAD+ efflux was observed instead. Furthermore, the rate of NAD+ accumulation in the matrix space was strongly inhibited by the analog N-4-azido-2-nitrophenyl-4-aminobutyryl-3′-NAD+. When suspended in a medium that avoided rupture of the outer membrane, intact purified mitochondria progressively lost their NAD+ content. This led to a slow decrease of NAD+-linked substrates oxidation by isolated mitochondria The rate of NAD+ efflux from the matrix space was strongly temperature dependent and was inhibited by the analog inhibitor of NAD+ transport indicating that a carrier was required for net flux in either direction. It is proposed that uptake and efflux operate to regulate the total matrix NAD pool size.  相似文献   

13.
Liu Y  Pu Y  Zhang X 《Journal of virology》2006,80(1):395-403
A previous study demonstrated that infection of rat oligodendrocytes by mouse hepatitis virus (MHV) resulted in apoptosis, which is caspase dependent (Y. Liu, Y. Cai, and X. Zhang, J. Virol. 77:11952-11963, 2003). Here we determined the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis. We found that caspase-9 activity was 12-fold higher in virus-infected cells than in mock-infected cells at 24 h postinfection (p.i.). Pretreatment of cells with a caspase-9 inhibitor completely blocked caspase-9 activation and partially inhibited the apoptosis mediated by MHV infection. Analyses of cytochrome c release further revealed an activation of the mitochondrial apoptotic pathway. Stable overexpression of the two antiapoptotic proteins Bcl-2 and Bcl-xL significantly, though only partially, blocked apoptosis, suggesting that activation of the mitochondrial pathway is partially responsible for the apoptosis. To identify upstream signals, we determined caspase-8 activity, cleavage of Bid, and expression of Bax and Bad by Western blotting. We found a drastic increase in caspase-8 activity and cleavage of Bid at 24 h p.i. in virus-infected cells, suggesting that Bid may serve as a messenger to relay the signals from caspase-8 to mitochondria. However, treatment with a caspase-8 inhibitor only slightly blocked cytochrome c release from the mitochondria. Furthermore, we found that Bax but not Bad was significantly increased at 12 h p.i. in cells infected with both live and UV-inactivated viruses and that Bax activation was partially blocked by treatment with the caspase-8 inhibitor. These results thus establish the involvement of the mitochondrial pathway in MHV-induced oligodendrocyte apoptosis.  相似文献   

14.
Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.  相似文献   

15.
UVB irradiation induced phosphorylation of JNK and subsequent apoptosis in human melanocytes. Depletion of both JNK1 and JNK2 expression using siRNA transfection, protected against apoptosis, as detected by decreased nuclear fragmentation and caspase-3 activity, as well as reduced translocation of Bax to mitochondria. Moreover, release of cathepsin B and D from lysosomes to the cytosol was reduced when JNK expression was suppressed by siRNA, demonstrating a JNK dependent regulation of lysosomal membrane permeabilization. In unirradiated control melanocytes, coimmunoprecipitation showed that Bim was sequestered by Mcl-1, which had a pro-survival function. After UVB irradiation, a significant decrease in Mcl-1 protein level was found, which was prevented by addition of a proteasome inhibitor. The interaction between Bim and Mcl-1 was reduced in response to UVB irradiation and Bim was phosphorylated in a JNK dependent manner. In conclusion, these findings suggest JNK to have an important pro-apoptotic function following UVB irradiation in human melanocytes, by acting upstream of lysosomal membrane permeabilization and Bim phosphorylation.  相似文献   

16.
17.
Calbindin-D28K protects against apoptotic and necrotic cell death; these effects have been attributed to its ability to buffer calcium. In this study, we investigated the mechanisms underlying the neuroprotective effects of calbindin-D28K in staurosporine (STS)-induced apoptosis and 1-methyl-4-phenylpyridinium (MPP+)-induced necrosis. Treatment of the dopaminergic neuronal cell line MN9D with STS or MPP+ induced cell death that was associated with increased levels of free intracellular calcium. However, only MPP+-induced death was inhibited by co-treatment of the cells with a calcium chelator or a sodium/calcium antiporter inhibitor. Overexpression of calbindin-D28K prevented MPP+-induced MN9D cell death, which occurs in the absence of any detectable caspase activation. These pro-survival effects of calbindin-D28K were associated with the inhibition of calcium-mediated calpain activation, as determined by processing of Bax. Overexpression of calbindin-D28K also blocked STS-induced MN9D death. However, this effect was accompanied by the inhibition of capase-3 cleavage, poly(ADP-ribose)polymerase cleavage, and caspase activity. These findings suggest that calbindin-D28K protects against both types of cell death by inhibiting caspase- or calcium-mediated death signaling pathway.  相似文献   

18.
Autophagy and apoptosis cooperate to modulate cell survival. Neutrophils are short-lived cells and apoptosis is considered to be the major mechanism of their death. In the present study, we addressed whether autophagy regulates neutrophil apoptosis and investigated the effects of autophagy inhibition on apoptosis of human neutrophils. We first showed that the established autophagy inhibitors 3-methyladenine (MA) and chloroquine (CQ) markedly accelerated spontaneous neutrophil apoptosis as was evidenced by phosphatidylserine exposure, DNA fragmentation and caspase-3 activation. Apoptosis induced by the autophagy inhibitors was completely abrogated by a pan-caspase inhibitor Q-VD-OPh. Unexpectedly, both MA and CQ significantly delayed neutrophil apoptosis induced by TNF-α, although the inhibitors did attenuate late pro-survival effect of the cytokine. The effect was specific for TNF-α because it was not observed in the presence of other inflammation-associated cytokines (IL-1β or IL-8). The autophagy inhibitors did not modulate surface expression of TNF-α receptors in the absence or presence of TNF-α. Both MA and CQ induced a marked down-regulation of a key anti-apoptotic protein Mcl-1 but did not affect significantly the levels of another anti-apoptotic protein Bcl-X(L). Finally, to confirm the effects of the pharmacological inhibition of autophagy by a genetic approach, we evaluated the consequences of siRNA-mediated autophagy suppression in neutrophil-like differentiated HL60 cells. Knockdown of ATG5 in the cells resulted in accelerated spontaneous apoptosis but attenuated TNF-α-induced apoptosis. Together, these data suggest that autophagy regulates neutrophil apoptosis in an inflammatory context-dependent manner and mediates the early pro-apoptotic effect of TNF-α in neutrophils.  相似文献   

19.
The wide variation in sensitivity of cancer cells to TRAIL- or histone deacetylase (HDAC) inhibitor – induced apoptosis precludes successful treatment of cancer with these agents. We report here that TRAIL and SBHA synergistically induce apoptosis of melanoma cells as revealed by quantitative analysis using the normalized isobologram method. This is supported by enhanced activation of caspase-3 and cleavage of its substrates, PARP and ICAD. Co-treatment with SBHA and TRAIL did not enhance formation of the death-inducing signaling complex (DISC) and processing of caspase-8 and Bid, but potentiated activation of Bax and release of Cytochrome C and Smac/DIABLO from mitochondria into the cytosol. SBHA down-regulated Bcl-XL, Mcl-1 and XIAP, but up-regulated Bax, Bak, and the BH3-only protein BimEL. Up-regulation of the latter by SBHA was attenuated by the presence of TRAIL, which was inhibitable by the pan-caspase inhibitor z-VAD-fmk. Inhibition of Bim by siRNA attenuated conformational changes of Bax, mitochondrial apoptotic events, and activation of caspase-3, leading to marked inhibition of the synergy between SBHA and TRAIL. Thus, Bim plays an essential role in synergistic induction of apoptosis by SBHA and TRAIL in melanoma. This work was supported by the NSW State Cancer Council, the Melanoma and Skin Cancer Research Institute Sydney, the Hunter Melanoma Foundation, NSW, and the National Health and Medical Research Council, Australia. X.D. Zhang is a Cancer Institute NSW Fellow.  相似文献   

20.
The mitochondrial NAD pool is particularly important for the maintenance of vital cellular functions. Although at least in some fungi and plants, mitochondrial NAD is imported from the cytosol by carrier proteins, in mammals, the mechanism of how this organellar pool is generated has remained obscure. A transporter mediating NAD import into mammalian mitochondria has not been identified. In contrast, human recombinant NMNAT3 localizes to the mitochondrial matrix and is able to catalyze NAD+ biosynthesis in vitro. However, whether the endogenous NMNAT3 protein is functionally effective at generating NAD+ in mitochondria of intact human cells still remains to be demonstrated. To modulate mitochondrial NAD+ content, we have expressed plant and yeast mitochondrial NAD+ carriers in human cells and observed a profound increase in mitochondrial NAD+. None of the closest human homologs of these carriers had any detectable effect on mitochondrial NAD+ content. Surprisingly, constitutive redistribution of NAD+ from the cytosol to the mitochondria by stable expression of the Arabidopsis thaliana mitochondrial NAD+ transporter NDT2 in HEK293 cells resulted in dramatic growth retardation and a metabolic shift from oxidative phosphorylation to glycolysis, despite the elevated mitochondrial NAD+ levels. These results suggest that a mitochondrial NAD+ transporter, similar to the known one from A. thaliana, is likely absent and could even be harmful in human cells. We provide further support for the alternative possibility, namely intramitochondrial NAD+ synthesis, by demonstrating the presence of endogenous NMNAT3 in the mitochondria of human cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号