首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The purpose of this study is to analyze the structure of the V3 loop of the HIV-1 gp120 molecule at the atomic level. The total energy of each member of the antibody-complexed 16-mer V3 conformer data set of Sharon et al. (PDB 1NJ0) was determined by the Hartree–Fock-self-consistent field (HF-SCF) method and with the GROMOS96 force field. There was no correlation between the results of the classical GROMOS96 force field analysis and the ab initio HF-SCF quantum mechanical analysis of the energy of the V3-loop-peptide conformers. HF-SCF optimization (AM1) of conformer geometries yielded structures in which HIS315 is displaced from its original position in the combining site of human antibody fragment 447-52D, but with the hairpin turn intact. The hairpin shape of the V3 loop remained detectable, albeit distorted, even with perturbation by a lithium dicationic electrostatic force field and by substitution of the PRO320 at the crown of the V3 hairpin by a GLY. These data suggest that the hairpin conformation is at least partially stable to long-range electrostatic perturbations, either with or without PRO in the tip of the crown of the V3-hairpin loop. Figure Molecular geometry of HIV-1 V3 conformer model 5 and a GLY320 substituted model 5. Space-filling models were obtained with ViewMol3D [Sharon et al. (2002) PDB 1NJ0]). Red=oxygen, blue=nitrogen, black=carbon, white=hydrogen and purple=lithium. End-to-end distance (D) was obtained with ViewMol3D and is in Ångströms. Geometry optimized GLY320 Model 5, D=4.74 ÅThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   

2.
 The effects of the ionic atmosphere on the enthalpic and entropic contributions to the reduction potential of native (state III) beef heart cytochrome c have been determined through variable-temperature direct electrochemistry experiments. At neutral or slightly alkaline pH values, from 5 to 50  °C, the reduction enthalpy and entropy become less negative with decreasing ionic strength. The reduction entropy extrapolated at null ionic strength is approximately zero, indicating that, in the absence of the screening effects of the salt ions on the network of the electrostatic interactions at the protein-solvent interface, the solvation properties and the conformational flexibility of the two redox states are comparable. The moderate decrease in E°′ observed with increasing ionic strength [ΔE°′IS =(E°′) I =0.1 M–(E°′) I =0 M=–0.035 V at 25  °C], once the compensating enthalpic and entropic effects of the salt-induced changes in the hydrogen bonding within the hydration sphere of the molecule in the two redox states are factorized out, results in being ultimately determined by the stabilizing enthalpic effect of the negatively charged ionic atmosphere on the ferri form. At pH 9, the ionic strength dependence of the reduction termodynamics of cytochrome c follows distinctive patterns, possibly as a result of specific binding of the hydroxide ion to the protein. A decrease in ionic strength at constant pH, as well as a pH increase at constant ionic strength, induces a depression of the temperature of the transition from the low-T to high-T conformer of cytochrome c, which suggests that a temperature-induced decrease in the pK a for a residue deprotonation is the key event of this conformational change. Received: 7 April 1999 / Accepted: 19 July 1999  相似文献   

3.
The calculation of optimized molecular structure and molecular hyperpolarizability of four new acridine-benzothiazolylamine chromophores (1–4) [2-nitro-6-(piperid-1-yl) acridine (1), 6-(benzothiazol-2-yl-amino)-2-nitro-acridine (2), 6-(6-ethylcarboxylate-benzothiazol-2-yl-amino)-2-nitroacridine (3), 6-(6-(β-hydroxyethyl-benzothiazol-2-yl-amino)-2-nitroacridine (4)] have been investigated using ab initio methods. Ab initio optimization were performed at the Hartree–Fock level using STO-3G basis set. The first hyperpolarizabilities have been calculated at the Hartree–Fock method with 6–31G and 6–311G basis sets using Gaussian 98W. In general, the first hyperpolarizability is dependent on the choice of method and basis set. To understand this phenomenon in the context of molecular orbital picture, we examined the frontier molecular orbital energies of all the molecules by using HF/6–31G, 6–311G levels. The polarizability, anisotropy of polarizability and ground state dipole moment of all the molecules have also been calculated. These acridine-benzothiazolylamine chromophores display significant second–order molecular nonlinearity, β (60.2–137.0 × 10−30 esu) and provide the basis for future design of efficient nonlinear optical materials having the acridine-benzothiazolylamine core.  相似文献   

4.
Hydrogenation from C60 to C60H60 was studied by an unrestricted broken spin symmetry Hartree–Fock approach implemented in semiempirical codes based on the AM1 technique. The calculations focused on the successive addition of hydrogen molecules to the fullerene cage following the identification of the cage target atoms by calculating the highest atomic chemical susceptibility at each step. The results obtained are analyzed from energy, symmetry, and composition perspectives.  相似文献   

5.
 The electrochemistry of a water-soluble fragment from the CuA domain of Thermus thermophilus cytochrome ba 3 has been investigated. At 25  °C, CuA exhibits a reversible reduction at a pyridine-4-aldehydesemicarbazone-modified gold electrode (0.1 M Tris, pH 8) with E° = 0.24 V vs NHE. Thermodynamic parameters for the [Cu(Cys)2Cu]+/0 electrode reaction were determined by variable-temperature electrochemistry (ΔS°rc = –5.4(12) eu, ΔS° = –21.0(12) eu, ΔH° = –11.9(4) kcal/mol;ΔG° = –5.6 (11) kcal/mol). The relatively small reaction entropy is consistent with a low reorganization energy for [Cu(Cys)2Cu]+/0 electron transfer. An irreversible oxidation of [Cu(Cys)2Cu]+ at 1 V vs NHE confirms that the CuII:CuII state of CuA is significantly destabilized relative to the CuII state of analogous blue-copper proteins. Received: 3 June 1996 / Accepted: 26 August 1996  相似文献   

6.
The molecular structure (bond distances and angles), conformational properties, dipole moment and vibrational spectroscopic data (vibrational frequencies, IR and Raman intensities) of phenyl benzoate were calculated using Hartree–Fock (HF), density functional (DFT), and second order Møller–Plesset perturbation theory (MP2) with basis sets ranging from 6-31G* to 6-311++G**. The theoretical results are discussed mainly in terms of comparisons with available experimental data. For geometric data, good agreement between theory and experiment is obtained for the MP2, B3LYP and B3PW91 levels with basis sets including diffuse functions. The B3LYP/6-31+G* theory level estimates the shape of the experimental functions for phenyl torsion around the Ph–O and Ph–C bonds well, but reproduces the height of the rotational barriers poorly. The B3LYP/6-31+G* harmonic force constants were scaled by applying the scaled quantum mechanical force field (SQM) technique. The calculated vibrational spectra were interpreted and band assignments were reported. They are in excellent agreement with experimental IR and Raman spectra.Figure Calculated and experimental (GED) potential energy functions for torsional motion of phenyl benzoate relative to the minimum value. a The potential function for torsion about the O3–C4 bond. b The potential function for torsion about the C2–C10 bond.  相似文献   

7.
We performed thermodynamic analysis of temperature-induced unfolding of mesophilic and thermophilic proteins. It was shown that the variability in protein thermostability associated with pH-dependent unfolding or linked to the substitution of amino acid residues on the protein surface is evidence of the governing role of the entropy factor. Numerical values of conformational components in enthalpy, entropy and free energy which characterize protein unfolding in the “gas phase” were obtained. Based on the calculated absolute values of entropy and free energy, a model of protein unfolding is proposed in which the driving force is the conformational entropy of native protein, as an energy of the heat motion (T·SNC) increasing with temperature and acting as an factor devaluating the energy of intramolecular weak bonds in the transition state.  相似文献   

8.
 The dynamic quenching of the luminescence of racemic Eu(III)(pyridine-2,6-dicarboxylate=dpa)3 3– by the title proteins is investigated and the enantioselectivity of the proteins in the quenching of the Δ and Λ enantiomers of Eu(dpa)3 3– is determined. The two diastereomeric quenching rate constants pertaining to azurin (k q Δ=3.3×106, k q Λ=2.7×106 M–1 s–1, pH 7.2, ionic strength I=22 mM) are lower than for its Met→44Lys mutant (k q Δ=1.9×107, k q Λ=1.4×107 M–1 s–1, same pH and I), indicating that energy transfer occurs from Eu(dpa)3 3– to the Cu(II) centre when the luminophore is bound to the hydrophobic patch of the protein near residue 44. The enantioselectivity remains unaltered by the mutation: k q Δ/k q Λ=1.27±0.04, so Lys44 is probably not in direct contact with the Eu chelate. The I and pH dependence of k q indicate that the lysine residue interacts electrostatically with Eu(dpa)3 3–. For plastocyanin the quenching rates are of the order of 106 M–1 s–1; for amicyanin they are two orders of magnitude larger (k q Δ=12×107, k q Λ=11×107 M–1 s–1, pH 7.2, I=22 mM). The variation of k q is attributed to differences in the charge distribution on the proteins, which influences the binding of the luminophore to the protein surface. For amicyanin the anion binding site near Lys59 and Lys60 may be involved in the energy transfer. Received: 16 June 1998 / Accepted: 18 September 1998  相似文献   

9.
The analysis of temperature-induced unfolding of proteins in aqueous solutions was performed. Based on the data of thermodynamic parameters of protein unfolding and using the method of semi-empirical calculations of hydration parameters at reference temperature 298 K, we obtained numerical values of enthalpy, free energy, and entropy which characterize the unfolding of proteins in the ‘gas phase’. It was shown that specific values of the energy of weak intramolecular bonds (?Hint), conformational free energy (?Gconf) and entropy (?Sconf) are the same for proteins with molecular weight 7–25 kDa. Using the energy value (?Hint) and the proposed approach for estimation of the conformational entropy of native protein (SNC), numerical values of the absolute free energy (GNC) were obtained.  相似文献   

10.
 Direct cyclic voltammetry and 1H NMR spectroscopy have been combined to investigate the electrochemical and spectroscopic properties of cytochrome c 553 isolated from the alkaliphilic soil bacterium Bacillus pasteurii. A quasi-reversible diffusion-controlled redox process is exhibited by cytochrome c 553 at a pyrolitic graphite edge microelectrode. The temperature dependence of the reduction potential, measured using a non-isothermal electrochemical cell, revealed a discontinuity at 308 K. The thermodynamic parameters determined in the low-temperature range (275–308 K;ΔS°′=–162.7±1.2 J mol–1 K–1, ΔH°′=–53.0±0.5 kJ mol–1, ΔG°′=–4.5±0.1 kJ mol–1, E°′=+47.0±0.6 mV) indicate the presence of large enthalpic and entropic effects, leading, respectively, to stabilization and destabilization of the reduced form of cytochrome c 553. Both effects are more accentuated in the high-temperature range (308–323 K;ΔS°′=–294.1±8.4 J mol–1 K–1, ΔH°′=–93.4±3.1 kJ mol–1, ΔG°′=–5.8±0.6 kJ mol–1, E°′=+60.3±5.8 mV), with the net result being a slight increase of the standard reduction potential. These thermodynamic parameters are interpreted using the compensation theory of hydration of biopolymers as indicating the extrusion, upon reduction, of water molecules from the hydration sphere of the cytochrome. The low-T and high-T conformers differ by the number of water molecules in the solvation sphere: in the high-T conformer, the number of water molecules extruded upon reduction increases, as compared to the low-T conformer. The ionic strength dependence of the reduction potential at 298 K, treated within the frame of extended Debye-Hückel theory, yields values of E °′ (I=0) =–25.4±1.4 mV, z red=–11.3, and z ox=–10.3. The pH dependence of the reduction potential at 298 K shows a plateau in the pH range 7–10 and an increase at more acidic pH, allowing the calculation of pK O=5.5 and pK R=5.7, together with the estimate of the reduction potentials of completely protonated (+71 mV) and deprotonated (+58 mV) forms of cytochrome c 553. 1H NMR spectra of the oxidized paramagnetic cytochrome c 553 indicate the presence of a His-Met axial coordination of the low-spin (S=1/2) heme iron, which is maintained in the temperature interval 288–340 K at pH 7 and in the pH range 4.8–10.0 at 298 K. The temperature dependence of the hyperfine-shifted signals shows both Curie-type and anti-Curie-type behavior, with marked deviations from linearity, interpreted as indicating the presence of a fast equilibrium between the low-T and high-T conformers, having slightly different heme electronic structures resulting from the T-induced conformational change. Increasing the NaCl concentration in the range 0–0.2 M causes a slight change of the 1H NMR chemical shifts of the hyperfine-shifted signals, with no influence on their linewidth. The calculated lower limit value of the apparent affinity constant for specific ion binding is estimated as 5.2±1.1 M–1. The pH dependence of the isotropically shifted 1H NMR signals of the oxidized cytochrome displays at least one ionization step with pK O=5.7. The thermodynamic and spectroscopic data indicate a large solvent-derived entropic effect as the main cause for the observed low reduction potential of B. pasteurii cytochrome c 553. Received: 9 January 1998 / Accepted: 8 April 1998  相似文献   

11.
We have investigated the registration of mammograms based on the Tsallis entropy using mutual information measure. Tsallis entropy has one more parameter ‘q’ and the values of ‘q’ decide the quality of the registration. Existing Tsallis entropy based algorithms are not automatic as they claimed to be. In this article, an automatic affine image registration based on Tsallis entropy is proposed and its performance is analyzed for clinically acquired mammograms for globally registering them. The accuracy is compared with traditionally used mutual information and normalized mutual information based on Shannon entropy. Our algorithm shows promising results with increased accuracy with reduction in number of evaluations. Further, the need for pre-registration in mammogram is discussed in detail. Through this experiment, it is found that the proposed algorithm is effective enough to replace Shannon and existing Tsallis entropy based affine registration schemes.  相似文献   

12.
The Weddell seal population in Erebus Bay, Antarctica, represents one of the best-studied marine mammal populations in the world, providing an ideal test for the efficacy of satellite imagery to inform about seal abundance and population trends. Using high-resolution (0.6 m) satellite imagery, we compared counts from imagery to ground counts of adult Weddell seals and determined temporal trends in Erebus Bay during November 2004–2006 and 2009, and December 2007. Seals were counted from QuickBird-2 and WorldView-1 images, and these counts were compared with ground counts at overlapping locations within Erebus Bay during the same time. Counts were compared across years and within individual haul-out locations. We counted a total of 1,000 adult Weddell seals from five images across all years (for a total of 21 satellite-to-ground count comparisons), approximately 72% of the total counted on the ground at overlapping locations. We accurately detected an increase in abundance during 2004–2009. There was a strong, positive correlation (r = 0.98, df = 3, P < 0.003) between ground counts and counts derived from the imagery. The correlation between counts at individual haul-out locations was also strong (r = 0.80, df = 19, P < 0.001). Detection rates ranged from 30 to 88%. Overall, our results showed the utility of high-resolution imagery to provide an accurate way to detect the presence and variation in abundance of Weddell seals. Our methods may be applied to other species in polar regions, such as walruses or polar bears, particularly in areas where little is known about population status.  相似文献   

13.
The entropy contribution ΔS to protein-ligand binding free energy is studied for nine protein-lipid complexes. The entropy effect from the loss of the translational/rotational degrees of freedom (ΔS tr) is calculated using the ideal gas approach. The change in the vibrational entropy (ΔS vib) is calculated using the effective quantum oscillator approach with frequencies derived from the coordinate covariance matrix, so the inharmonic effects are taken into account. The change in the entropy of solvation (ΔS solv) is considered using the binomial cell model (developed by the authors) for the hydrophobic effect. The entropy contribution from loss of conformations that are available for the free ligand (ΔS conf) is also estimated. It is revealed that the negative in view of binding term ΔS tr is only partly compensated by increasing of ΔS vib, so TS tr + ΔS vib + ΔS conf) < 0 for all complexes under investigation, but taking into account ΔS solv leads to significantly increased ΔS. For all complexes except biotin-streptavidin, the results are found to be in reasonable agreement with experimental data. Published in Russian in Biokhimiya, 2007, Vol. 72, No. 7, pp. 963–973.  相似文献   

14.
Conformational preferences of the modified nucleosides N2-methylguanosine (m2G) and N2, N2-dimethylguanosine (m22G) have been studied theoretically by using quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. Automated complete geometry optimization using semiempirical quantum chemical RM1, along with ab initio molecular orbital Hartree–Fock (HF-SCF), and density functional theory (DFT) calculations has also been made to compare the salient features. Single-point energy calculation studies have been made on various models of m2G26:C/A/U44 and m22G26:C/A/U44. The glycosyl torsion angle prefers “syn” (χ = 286°) conformation for m2G and m22G molecules. These conformations are stabilized by N(3)–HC2′ and N(3)–HC3′ by replacing weak interaction between O5′–HC(8). The N2-methyl substituent of (m2G26) prefers “proximal” or s-trans conformation. It may also prefer “distal” or s-cis conformation that allows base pairing with A/U44 instead of C at the hinge region. Thus, N2-methyl group of m2G may have energetically two stable s-trans m2G:C/A/U or s-cis m2G:A/U rotamers. This could be because of free rotations around C–N bond. Similarly, N2, N2-dimethyl substituent of (m22G) prefers “distal” conformation that may allow base pairing with A/U instead of C at 44th position. Such orientations of m2G and m22G could play an important role in base-stacking interactions at the hinge region of tRNA during protein biosynthesis process.  相似文献   

15.
16.
During roosting in summer, reproductive female bats appear to use torpor less frequently and at higher body temperatures (T b) than male bats, ostensibly to maximise offspring growth. To test whether field observations result from differences in thermal physiology or behavioural thermoregulation during roosting, we measured the thermoregulatory response and energetics of captive pregnant and lactating female and male long-eared bats (Nyctophilus geoffroyi 8.9 g and N. gouldi 11.5 g) during overnight exposure to a constant ambient temperature (T a) of 15°C. Bats were captured 1–1.5 h after sunset and measurements began at 21:22±0:36 h. All N. geoffroyi entered torpor commencing at 23:47±01:01 h. For N. gouldi, 10/10 males, 9/10 pregnant females and 7/8 lactating females entered torpor commencing at 01:10±01:40 h. The minimum T b of torpid bats was 15.6±1.1°C and torpid metabolic rate (TMR) was reduced to 0.05±0.02 ml O2 g−1 h−1. Sex or reproductive condition of either species did not affect the timing of entry into torpor (F=1.5, df=2, 19, P=0.24), minimum TMR (F=0.21, df=4, 40, P=0.93) or minimum T b (F=0.76, df=5, 41, P=0.58). Moreover, sex or reproductive condition did not affect the allometric relationship between minimum resting metabolic rate and body mass (F=1.1, df=4, 37, P=0.37). Our study shows that under identical thermal conditions, thermal physiology of pregnant and lactating female and male bats are indistinguishable. This suggests that the observed reluctance by reproductive females to enter torpor in the field is predominantly because of ecological rather than physiological differences, which reflect the fact that females roost gregariously whereas male bats typically roost solitarily.  相似文献   

17.
Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C–P lyase incapable of degrading GP (C–P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C–P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C–P lyase II. O. anthropi GPK 3 also degraded MP via C–P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.  相似文献   

18.
The interaction between benzophenone (BP) and bovine serum albumin (BSA) was investigated by the methods of fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism (CD) measurements under simulative physiological conditions. The experiment results showed that the fluorescence quenching of BSA by BP was resulted from the formation of a BP–BSA complex and the corresponding association constants (K a) between BP and BSA at four different temperatures had been determined using the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be –43.73 kJ mol−1 and −53.05 J mol−1 K−1, respectively, which suggested that hydrogen bond and van der Waals force played major roles in stabilizing the BP–BSA complex. Site marker competitive experiments indicated that the binding of BP to BSA primarily took place in site I (sub-domain IIA). The conformational investigation showed that the presence of BP decreased the α-helical content of BSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules.  相似文献   

19.
A theoretical study of L-proline-nH2O (n = 1–3) has been performed using the hybrid DFT-B3LYP and MP2 methods together with the 6-311++G(d,p) basis set. The results show that the P2 conformer is energetically favorable when forming a hydrated structure, and the hydration of the carboxyl group leads to the greatest stability. For hydrated complexes, the adiabatic and vertical singlet–triplet excitation energies tend to decrease with the addition of water molecules. The hydration energy indicates that in the hydrated complexes the order of stability is: binding site 2 > binding site 1 > binding site 3, and binding site 12 > binding site 23 > binding site 13. As water molecules are added, the stabilities of these hydrated structures gradually increase. In addition, an infrared frequency analysis indicated that there are some differences in the low-frequency range, which are mainly dominated by the O–H stretching or bending vibrations of different water molecules. All of these results should aid our understanding of molecular behavior and provide reference data for further studies of biological systems.  相似文献   

20.
Membrane-bound nitrate reductase from Marinobacter hydrocarbonoclasticus 617 can be solubilized in either of two ways that will ultimately determine the presence or absence of the small (Ι) subunit. The enzyme complex (NarGHI) is composed of three subunits with molecular masses of 130, 65, and 20 kDa. This enzyme contains approximately 14 Fe, 0.8 Mo, and 1.3 molybdopterin guanine dinucleotides per enzyme molecule. Curiously, one heme b and 0.4 heme c per enzyme molecule have been detected. These hemes were potentiometrically characterized by optical spectroscopy at pH 7.6 and two noninteracting species were identified with respective midpoint potentials at E m = +197 mV (heme c) and −4.5 mV (heme b). Variable-temperature (4–120 K) X-band electron paramagnetic resonance (EPR) studies performed on both as-isolated and dithionite-reduced nitrate reductase showed, respectively, an EPR signal characteristic of a [3Fe–4S]+ cluster and overlapping signals associated with at least three types of [4Fe–4S]+ centers. EPR of the as-isolated enzyme shows two distinct pH-dependent Mo(V) signals with hyperfine coupling to a solvent-exchangeable proton. These signals, called “low-pH” and “high-pH,” changed to a pH-independent Mo(V) signal upon nitrate or nitrite addition. Nitrate addition to dithionite-reduced samples at pH 6 and 7.6 yields some of the EPR signals described above and a new rhombic signal that has no hyperfine structure. The relationship between the distinct EPR-active Mo(V) species and their plausible structures is discussed on the basis of the structural information available to date for closely related membrane-bound nitrate reductases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号