首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alopecia X is a noninflammatory, progressive, bilateral symmetric alopecia in dogs. The disease is mainly found in Nordic breeds. The breed predisposition and a strong familial accumulation suggest a hereditary background. We analyzed the cathepsin L2 gene (CTSL2) as a candidate for alopecia X. The comparative sequencing of 14 affected and 18 control animals revealed ten polymorphisms; however, none of these polymorphisms affected the coding sequence. Haplotype analysis did not reveal an association of one particular CTSL2 haplotype with the disease phenotype; therefore, we conclude that the CTSL2 gene is probably not the causative gene for alopecia X.  相似文献   

2.
本研究旨在探讨自噬基因CTSL对胶质母细胞瘤(GBM)患者的预后影响。利用癌症基因组图谱(TCGA)、人类自噬数据库(HADB)、中国脑胶质瘤基因组图谱(CGGA)数据库、基因表达谱分析(GEPIA)获取数据信息,通过筛选差异表达基因及单因素和多因素COX分析确定GBM的独立预后危险因素,同时通过基因本体论(GO)、基因组百科全书途径(KEGG)、临床病理相关性、基因集富集分析(GSEA)、自噬基因网络分析CTSL的相关作用机制。结果显示:(1)富集分析显示胶质母细胞瘤中差异自噬基因(ARG)与自噬体的形成、细胞凋亡、血管生成、细胞化疗等相关;(2)GBM中CTSL的mRNA水平明显高于正常组织样本;(3)多因素COX回归分析显示自噬基因CTSL的高表达为GBM预后的独立危险因素,STUPP治疗(术后替莫唑胺[Tmz]同步放化疗+Tmz辅助化疗)为独立保护因素;(4)自噬基因CTSL在非GCIMP(CpG岛甲基化)型、间质型、IDH野生型、1p/19q无缺失型胶质母细胞瘤及化疗后表达量更高。综上所述,本研究分析了自噬基因在GBM中的作用,并表明自噬基因CTSL的过表达预示胶质母细胞瘤患者不良预后,显示自噬基因CTSL有作为有效靶标的潜质。  相似文献   

3.
4.
Genetic studies in shrimp have focused on disease, with production traits such as growth left unexamined. Two shrimp species, Litopenaeus vannamei and Penaeus monodon, which represent the majority of US shrimp imports, were selected for single nucleotide polymorphism (SNP) discovery in alpha-amylase (AMY2) and cathepsin-l (CTSL), both candidate genes for growth. In L. vannamei, four SNPs were found in AMY2 and one SNP was found in CTSL. In P. monodon, one SNP was identified in CTSL. The CTSL gene was mapped to linkage group 28 of P. monodon using the female map developed with the Australian P. monodon mapping population. Association analyses for the AMY2 and CTSL genes with body weight (BW) were performed in two L. vannamei populations. While neither gene was found to be significantly associated with BW in these populations, there was a trend in one population towards higher BW for allele G of CTSL SNP C681G.  相似文献   

5.
Complete or partial congenital absence of hair (congenital alopecia) may occur either in isolation or with associated defects. The majority of families with isolated congenital alopecia has been reported to follow an autosomal-recessive mode of inheritance (MIM 203655). As yet, no gene has been linked to isolated congenital alopecia, nor has linkage been established to a specific region of the genome. In an attempt to map the gene for the autosomal recessive form of the disorder, we have performed genetic linkage analysis on a large inbred Pakistani family in which affected persons show complete absence of hair development (universal congenital alopecia). We have analyzed individuals of this family, using >175 microsatellite polymorphic markers of the human genome. A maximum LOD score of 7.90 at a recombination fraction of 0 has been obtained with locus D8S258. Haplotype analysis of recombination events localized the disease to a 15-cM region between marker loci D8S261 and D8S1771. We have thus mapped the gene for this hereditary form of isolated congenital alopecia to a locus on chromosome 8p21-22 (ALUNC [alopecia universalis congenitalis]). This will aid future identification of the responsible gene, which will be extremely useful for the understanding of the biochemistry of hair development.  相似文献   

6.
Mutation analysis of the Fanconi anemia gene FACC.   总被引:9,自引:2,他引:7       下载免费PDF全文
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. We have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. We identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A-->T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in our study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A-->T have Jewish ancestry and have a severe phenotype.  相似文献   

7.
The P2X(7) gene is important for the innate immune response but known polymorphisms do not explain all subjects with loss of P2X(7) function. A splice site mutation (g-->t) was found at position +1 of the first intron of the P2X(7) gene in 7 of 336 Caucasians and 1 of 39 subjects of Indian ethnicity. All eight subjects were heterozygous for the uncommon 1513A-->C polymorphism of the P2X(7) gene. RT-PCR and sequencing showed the splice site mutation was on the 1513C allele in the Caucasians and on the 1513A allele in the Indian subject. The splice site mutation is an inherited polymorphism and gives rise to a P2X(7) null allele in 1-2% of the Caucasian population.  相似文献   

8.
9.
Interaction of gene wellhaarig (we) with genes waved alopecia (wal) and hairless (hr) was studied in mice. The mutant gene we is responsible for the development of a specific waved coat in homozygotes. Homozygous mice carrying mutant gene wal also have a wavy coat, though a partial alopecia develops with time in these animals. In homozygotes for the hr gene, hair loss is observed beginning from the age of ten days. A series of crosses we/we and wal/wal yielded animals with we/+wal/wal and we/we wal/wal genotypes. In mice we/+wal/wal carrying gene we at a single dose, alopecia is accelerated significantly as compared to the single-dose homozygotes +/+wal/wal. In we/we wal/wal mice, alopecia starts earlier than in we/+wal/wal mice; by the age of one month, the double homozygotes are almost hairless except for small body areas covered with a sparse coat. In addition, curliness of the first-generation hair in mice we/we wal/wal is much more expressed than in +/+wal/wal and we/we+/+ mice. The obtained evidence suggests that the we gene is a modifier of the wal gene because the former enhances the effects of the wal gene, which is confirmed by the earlier onset of alopecia and progression of the latter in mice having the we/+wal/wal genotype and especially in we/we wal/wal animals. The we/we hr/+ mice do not differ in coat from we/we+/+ mice; in both cases, the coat is wavy. The coat of double homozygotes we/we hr/hr, is similar to that of we/we+/+ mice until ten days of age, when the signs of alopecia appear. By the age of 21 days, mice we/we hr/hr have lost their coat completely like mice +/+ hr/hr. Hence, the we gene is a modifier of the wal gene though it does not interact with hr gene during the coat formation.  相似文献   

10.
目的:研究DNA切除修复交叉互补基因1(excision repair cross-complementing gene1,ERCC1)单核苷酸多态性与非小细胞肺癌铂类药物化疗敏感性的关系。方法:应用基因测序方法检测89例以铂类药物为主要化疗方案的非小细胞肺癌患者的ERCC1 Asn118Asn基因型,,比较不同基因型与化疗疗效的关系。结果:89例患者化疗总有效率为29.2%。携带ERCC1 CC基因型、含至少一个变异基因型(TC和TT基因型)患者的有效率分别为38.5%和61.5%(X2=2.151,p=0.142),基因型在化疗有效组和无效组之间的分布无差异(p〉0.05)。结论:ERCC1Asn118Asn单核苷酸多态性可能与非小细胞肺癌对铂类药物化疗的敏感性无关。  相似文献   

11.
Summary Haplotypes of the apoprotein B gene, localised to chromosome 2, were identified using restriction fragment length polymorphisms (RFLPs) for the enzymes XbaI and EcoRI. Four haplotypes were identified at this locus, X1R1 (H1), X1R2 (H2), X2R1 (H3) and X2R2 (H4); where the X1 and X2 alleles were characterised by gene-related fragments of 5.0 and 8.6 kb respectively and the R1 and R2 alleles by fragments of 13.0 and 11.0 kb respectively. Although the polymorphic sites are less than 10 kb apart, they were found to be in linkage equilibrium. The value of the disequilibrium parameter (D) was 0.0042, approximately 7.5% of the theoretical maximum (Dmax=0.054). No disease association could be demonstrated between either apoB RFLP, or haplotype, and coronary athersclerosis in our population from south-east England. This was in accordance with a study of apoB RFLPs for a population from the West Coast of the United States, but in contrast to a study of an East-Coast population. There are no previous data for the association between apoB haplotypes and coronary atherosclerosis.  相似文献   

12.
CTSL is expressed by cancerous tissues and encodes a lysosomal cysteine proteinase that regulates cancer progression and SARS-CoV-2 entry. Therefore, it is critical to predict the susceptibility of cancer patients for SARS-CoV-2 and evaluate the correlation between disease outcomes and the expression of CTSL in malignant cancer tissues. In the current study, we analyzed CTSL expression, mutation rate, survival and COVID-19 disease outcomes in cancer and normal tissues, using online databases. We also performed immunohistochemistry (IHC) to test CTSL expression and western blot to monitor its regulation by cordycepin (CD), and N6, N6-dimethyladenosine (m62A), respectively. We found that CTSL is conserved across different species, and highly expressed in both normal and cancer tissues from human, as compared to ACE2 or other proteinases/proteases. Additionally, the expression of CTSL protein was the highest in the lung tissue. We show that the mRNA expression of CTSL is 66.4-fold higher in normal lungs and 54.8-fold higher in cancer tissues, as compared to ACE2 mRNA expression in the respective tissues. Compared to other proteases/proteinases/convertases such as TMPRSS2 and FURIN, the expression of CTSL was higher in both normal lungs and lung cancer samples. All these data indicate that CTSL might play an important role in COVID-19 pathogenesis in normal and cancer tissues of the lungs. Additionally, the CTSL-002 isoform containing both the inhibitor_I29 and Peptidase_C1 domains was highly prevalent in all cancers, suggesting its potential role in tumor progression and SARS-CoV-2 entry in multiple types of cancers. Further analysis of the expression of CTSL mutant showed a correlation with FURIN and TMPRSS2, suggesting a potential role of CTSL mutations in modulating SARS-CoV-2 entry in cancers. Moreover, high expression of CTSL significantly correlated with a short overall survival (OS) in lung cancer and glioma. Thus, CTSL might play a major role in the susceptibility of lung cancer and glioma patients to SARS-CoV-2 uptake and COVID-19 severity. Furthermore, CD or m62A inhibited CTSL expression in the cancer cell lines A549, MDA-MB-231, and/or PC3 in a dose dependent manner. In conclusion, we show that CTSL is highly expressed in normal tissues and increased in most cancers, and CD or m62A could inhibit its expression, suggesting the therapeutic potential of targeting CTSL for cancer and COVID-19 treatment.  相似文献   

13.
Dilated cardiomyopathy (DCM) is a common disease in humans and dogs. Large-breed dogs and especially Irish wolfhounds belong to the frequently affected breeds. Male Irish wolfhounds show a significantly higher prevalence of DCM than females. Therefore, we evaluated X chromosome markers for linkage with DCM as well as a human candidate gene on the X chromosome. A set of X chromosomal microsatellites was genotyped in Irish wolfhound families segregating for DCM. In addition, exon and intron sequences of the tafazzin (TAZ) gene were assayed for polymorphisms segregating in these families. Statistical analysis of the microsatellite markers did not reveal linkage to DCM. Furthermore, all Irish wolfhounds included in this study were monomorphic for TAZ, and only 8 sequence differences to the Dog Genome Assembly 2.1 could be found. The results indicate that due to the lack of mutations, TAZ is unlikely to cause DCM in Irish wolfhounds.  相似文献   

14.
The analysis of 10 X-linked DNA polymorphisms (five mapping on the short arm and five on the long arm) in two Becker muscular dystrophy pedigrees has been used to localize this gene in the known sequence of DNA polymorphic markers on the X chromosome. In the first pedigree, the carrier mother, whose phase for Becker and for five informative polymorphisms is known, has transmitted a double recombinant X chromosome to one of her two affected sons. The discordance between these two affected brothers for four of the five informative polymorphisms indicates that the Becker gene is located between RC8 or D2 on one side and pDP34 on the other. In the second pedigree, where the maternal grandfather is dead and two maternal first cousins are affected, the phase of DNA polymorphic alleles has been identified in somatic cell hybrids resulting from the fusion of hamster fibroblasts with lymphocytes of the mothers and aunt of the patients. The discordance between the two first cousins for two of the four informative DNA polymorphisms is best explained by the occurrence of a single recombination in the X chromosome carried by one of them. This result further restricts the localization of the Becker gene to a region of the short arm delimited by B24 and L 1.28. Regional and fine gene mapping through the approach described in this paper should become useful in the future for X-linked as well as for autosomal genes.  相似文献   

15.
A fragile gene     
Fragile X syndrome is the most common cause of inherited mental retardation in humans. The fragile X gene (FMR1) has been cloned and the mutation causing the disease is known. The molecular basis of the disease is an expansion of a trinucleotide repeat sequence (CGG) present in the first exon within the 5′ untranslated region of the FMR1 gene. Affected individuals have repeat CGG sequences of above 200. As a result the gene is not producing protein. It has been shown that the FMR1 protein has RNA binding activity, but the function of this RNA binding activity is not known. The timing and mechanism of repeat amplification are not yet understood. An animal model for fragile X syndrome has been generated, which can be used to study the clinical and biochemical abnormalities caused by absence of FMR1 protein product.  相似文献   

16.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The associations of apolipoprotein B (apoB) gene polymorphisms with blood lipid levels, also accounting for apo E polymorphisms, were assessed in 82 phenylketonuric (PKU) children on diet (34 girls, 48 boys, age 4-12 years, median 8 years). Dietary and plasma biochemical assessments were performed at six-month intervals from the age of 24 months onwards. Apo B (XbaI, MspI, EcoRI restriction sites) and apo E (E2, E3, E4) gene polymorphisms were determined by restriction-enzyme analysis after DNA extraction from blood. Subgroups of apoB polymorphisms were similar for energy intake, dietary lipids and distribution of apo E polymorphisms. Children carrying XbaI X+ / X+ showed higher plasma levels of LDL cholesterol than children carrying X- / X-/+. This gene-related response to dietary habits might play a role also in non-PKU individuals fed low-fat, low-cholesterol diets.  相似文献   

18.
19.
The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1) in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2) genes in the breast muscle of broilers. Broilers from 1–21 and 22–42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD), recommended level of methionine (DL1), and excess supplementation of methionine (DL2). The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS) (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively). The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001) and the highest CTSL2 gene expression (P<0.0001). The methionine supplementation increased the IGF-I (P = 0.0144) and GHR (P = 0.0011) gene expression and decreased the CTSL2 (P = 0.0004) and atrogin 1 (P = 0.0012) gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252) and CTSL2 (P = 0.0011) gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001), with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that methionine supplementation could induce protein deposition because methionine increased the expression of genes related to protein synthesis and decreased the expression of genes related to protein breakdown.  相似文献   

20.

Background

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy syndrome (APECED) is an autosomal recessive disease due to mutations of the autoimmune regulator (AIRE) gene. Typical manifestations include candidiasis, Addison's disease, and hypoparathyroidism. Type 1 diabetes, alopecia, vitiligo, ectodermal dystrophy, celiac disease and other intestinal dysfunctions, chronic atrophic gastritis, chronic active hepatitis, autoimmune thyroid disorders, pernicious anemia and premature ovarian failure are other rare associated diseases although other conditions have been associated with APECED.

Case presentation

What follows is the clinical, endocrinological and molecular data of a female APECED patient coming from Lithuania. The patient was affected by chronic mucocutaneous candidiasis, hypoparathyroidism and pre-clinical Addison's disease. Using direct sequencing of all the 14 exons of the AIRE gene in the patient's DNA, we identified in exon 6 the known mutation c.769 C>T (p.Arg257X) in compound heterozygosity with the newly discovered mutation c.1214delC (p.Pro405fs) in exon 10. The novel mutation results in a frameshift that is predicted to alter the sequence of the protein starting from amino acid 405 as well as to cause its premature truncation, therefore a non-functional Aire protein.

Conclusions

A novel mutation has been described in a patient with APECED with classical clinical components, found in compound heterozygosity with the c.769 C>T variation. Expanded epidemiological investigations based on AIRE gene sequencing are necessary to verify the relevancy of the novel mutation to APECED etiopathogenesis in the Lithuanian population and to prove its diagnostic efficacy in association with clinical and immunological findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号