首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elevated cholesterol levels promote proinflammatory and prothrombogenic responses in venules and impaired endothelium-dependent arteriolar dilation. Although NAD(P)H oxidase-derived superoxide has been implicated in the altered vascular responses to hypercholesterolemia, it remains unclear whether this oxidative pathway mediates the associated arteriolar dysfunction and platelet adhesion in venules. Platelet and leukocyte adhesion in cremasteric postcapillary venules and arteriolar dilation responses to acetylcholine were monitored in wild-type (WT), Cu,Zn-superoxide dismutase transgenic (SOD-TgN), and NAD(P)H oxidase-knockout (gp91(phox-/-)) mice placed on a normal (ND) or high-cholesterol (HC) diet for 2 weeks. HC elicited increased platelet and leukocyte adhesion in WT mice versus ND. Cytosolic subunits of NAD(P)H oxidase (p47phox and p67phox) were expressed in platelets. This was not altered by hypercholesterolemia; however, platelets and leukocytes from HC mice exhibited elevated generation of reactive oxygen species compared to ND mice. Hypercholesterolemia-induced leukocyte recruitment was attenuated in SOD-TgN-HC and gp91(phox-/-)-HC mice. Recruitment of platelets derived from WT-HC mice in venules of SOD-TgN-HC or gp91(phox-/-)-HC recipients was comparable to ND levels. Adhesion of SOD-TgN-HC platelets paralleled the leukocyte response and was attenuated in SOD-TgN-HC recipients, but not in WT-HC recipients. However, gp91(phox-/-)-HC platelets exhibited low levels of adhesion comparable to those of WT-ND in both hypercholesterolemic gp91(phox-/-) and WT recipients. Arteriolar dysfunction was evident in WT-HC mice, compared to WT-ND. Overexpression of SOD or, to a lesser extent, gp91(phox) deficiency restored arteriolar vasorelaxation responses toward WT-ND levels. These findings reveal a novel role for platelet-associated NAD(P)H oxidase in producing the thrombogenic phenotype in hypercholesterolemia and demonstrate that NAD(P)H oxidase-derived superoxide mediates the HC-induced arteriolar dysfunction.  相似文献   

2.
Aceylation of cyclooxygenase (COX)-2 by aspirin can trigger the formation of 15(R)-epilipoxin A4, or aspirin-triggered lipoxin (ATL). ATL exerts protective effects in the stomach. Selective COX-2 inhibitors block ATL synthesis and exacerbate aspirin-induced gastric damage. Nitric oxide-releasing aspirins, including NCX-4016, have antiplatelet effects similar to aspirin but do not cause gastric damage. In the present study, we examined whether or not NCX-4016 triggers ATL synthesis and/or upregulates gastric COX-2 expression and the effects of coadministration of NCX-4016 with a selective COX-2 inhibitor on gastric mucosal injury and inflammation. Rats were given aspirin or NCX-4016 orally and either vehicle or a selective COX-2 inhibitor (celecoxib) intraperitoneally. Gastric damage was blindly scored, and granulocyte infiltration into gastric tissue was monitored through measurement of myeloperoxidase activity. Gastric PG and ATL synthesis was measured as was COX-2 expression. Whereas celecoxib inhibited gastric ATL synthesis and increased the severity of aspirin-induced gastric damage and inflammation, coadministration of celecoxib and NCX-4016 did not result in damage or inflammation. NCX-4016 did not upregulate gastric COX-2 expression nor did it trigger ATL synthesis (in contrast to aspirin). Daily administration of aspirin for 5 days resulted in significantly less gastric damage than that seen with a single dose, as well as augmented ATL synthesis. Celecoxib reversed this effect. In contrast, repeated administration of NCX-4016 failed to cause gastric damage, whether given alone or with celecoxib. These studies support the notion that NCX-4016 may be an attractive alternative to aspirin for indications such as cardioprotection, including in individuals also taking selective COX-2 inhibitors.  相似文献   

3.
Occurrence of gastrointestinal damage and delayed healing of pre-existing ulcer are commonly observed in association with clinical use of nonsteroidal antiinflammatory drugs (NSAIDs). We examined the effects of NS-398, the cyclooxygenase (COX)-2 selective inhibitor, and nitric oxide (NO)- releasing aspirin (NCX-4016) on gastric mucosal ulcerogenic and healing responses in experimental animals, in comparison with those of nonselective COX inhibitors such as indomethacin and aspirin. Indomethacin and aspirin given orally were ulcerogenic by themselves in rat stomachs, while either NS-398 or NCX-4016 was not ulcerogenic at the doses which exert the equipotent antiinflammatory action with indomethacin or aspirin. Among these NSAIDs, only NCX-4016 showed a dose-dependent protection against gastric lesions induced by HCl/ethanol in rats. On the other hand, the healing of gastric ulcers induced in mice by thermal-cauterization was significantly delayed by repeated administration of these NSAIDs for more than 7 days, except NCX-4016. Gastric mucosal prostaglandin contents were reduced by indomethacin, aspirin and NCX-4016 in both normal and ulcerated mucosa, while NS-398 significantly decreased prostaglandin generation only in the ulcerated mucosa. Oral administration of NCX-4016 in pylorus-ligated rats and mice increased the levels of NO metabolites in the gastric contents. In addition, both NS-398 and NCX-4016 showed an equipotent anti-inflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and aspirin. These results suggest that both indomethacin and aspirin are ulcerogenic by themselves and impair the healing of pre-existing gastric ulcers as well. The former action is due to inhibition of COX-1, while the latter effect may be accounted for by inhibition of COX-2 and mimicked by NS-398, the COX-2 selective NSAID. NCX-4016, despite inhibiting both COX-1 and COX-2, protects the stomach against damage and preserves the healing response of gastric ulcers, probably because of the beneficial action of NO.  相似文献   

4.
Aspirin that has been chemically combined with a nitric oxide (NO) donor (NCX-4016) has been shown to inhibit cyclooxygenase and prostaglandin generation while maintaining the inhibitory effects of aspirin. The possible role of reactive oxygen species (ROS) in the action of NCX-4016 in ischemia-reperfusion (I/R) has not been studied. Furthermore, we were interested in comparing the effects of a conventional NO donor [2,2'-hydroxynitrosohydrazino-bis-etanamine (DETA/NO)] and NCX-4016 at the microvascular level in the hamster cheek pouch visualized by using an intravital fluorescent microscopy technique. Microvascular injury was assessed by measuring diameter change, the perfused capillary length (PCL), and leukocyte adhesion. Animals were treated with NCX-4016 (100 mg/kg or 30 mg.kg(-1).day(-1) for 5 days po) or DETA-NO (0.5 mg/kg). Mean arterial blood pressure increased slightly but significantly after NCX-4016 treatment. During 5- and 15-min reperfusion, lipid peroxides in the systemic blood increased by 72 and 89% vs. baseline, respectively, and were still higher than in basal conditions after 30-min reperfusion in the I/R group. Pretreatment with NCX-4016 maintained ROS at normal levels; increased arteriolar diameter, blood flow, and PCL; and decreased leukocyte adhesion (P < 0.05). DETA-NO decreased ROS during 30-min reperfusion; however, later there was a significant increase during reperfusion. DETA-NO decreased leukocyte adhesion (P < 0.05) but microvascular permeability increased after 30 min of reperfusion. In conclusion, NCX-4016 attenuates oxidative stress and prevents arteriolar constriction during I/R, whereas DETA-NO increases lipid peroxides in the systemic blood and permeability after reperfusion.  相似文献   

5.
Although hypercholesterolemia is known to impair endothelium-dependent vasodilation (EDV) long before the appearance of atherosclerotic plaques, it remains unclear whether the immune mechanisms that have been implicated in atherogenesis also contribute to the early oxidative stress and endothelial cell dysfunction elicited by hypercholesterolemia. EDV (wire myography), superoxide generation (cytochrome c reduction), and NAD(P)H oxidase mRNA expression were monitored in aortic rings from wild-type (WT) and mutant mice placed on either a normal diet or a cholesterol-enriched diet (HC) for 2 wk. WT mice on HC exhibited impaired EDV, enhanced superoxide generation, and increased expression of NAD(P)H oxidase subunit Nox-2 mRNA. The impaired EDV and increased superoxide generation induced by HC were significantly blunted in severe combined immunodeficient (SCID) mice and CD4+ T lymphocyte-deficient mice. These responses were also attenuated in HC mice genetically deficient in IFN-gamma; however, adoptive transfer of WT-HC CD4+ T lymphocytes to IFN-gamma-deficient recipients restored HC-induced responses. The HC-induced impaired EDV and oxidative stress were also attenuated in HC mice genetically deficient in Nox-2 (gp91(phox-/-)) and in WT-->gp91(phox-/-)-HC chimeras. HC-induced gp91(phox) mRNA expression was significantly blunted in mice deficient in CD4+ T cells or IFN-gamma and was restored with adoptive transfer of WT-HC CD4+ T cells to IFN-gamma-deficient recipients. These findings implicate the immune system in the early endothelial cell dysfunction associated with hypercholesterolemia and are consistent with a mechanism of impaired EDV that is mediated by CD4+ T cells and IFN-gamma, acting through the generation of superoxide from vascular NAD(P)H oxidase.  相似文献   

6.
The 2-(acetyloxy)benzoic acid 3-(nitrooxymethyl)phenyl ester (NCX-4016) is a NO-releasing derivative of aspirin. In this study, we provide evidence that NCX-4016 delivered to PMBC-derived T lymphocytes and monocytes causes a transitory inhibition of cell respiration and approximately 50% reduction of cellular ATP, which translates in a time-reversible inhibition of cell proliferation and IL-2, IL-4, IL-5, and IFN-gamma secretion. Exposure of lymphocytes and monocytes to aspirin, 2-(acetyloxy)benzoic acid 3-(hydroxymethyl)phenyl ester (NCX-4017), a non-NO-releasing analog of NCX-4016, and cyclooxygenase inhibitors, reduced PG formation, but has no effect on cytokine/chemokine release. In contrast, delivering NO with (z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino] diazen-1-ium-1,2 diolate (DETA-NO) reproduced most of the metabolic and anti-cytokine activities of NCX-4016. Scavenging NO with hemoglobin or adding selective substrates of complex II, III, and IV of the mitochondrial respiratory chain reverses NCX-4016' inhibitory activities. Exposure to DETA-NO and NCX-4016 enhances glucose uptake, glycolytic rate, and lactate generation in CD3/CD28-costimulated lymphocytes, while reduced citric acid cycle intermediates. These effects were not reproduced by selective and nonselective cyclooxygenase 2 inhibitors. In summary, we demonstrated that exposure of lymphocytes to NCX-4016 causes a metabolic hypoxia that inhibits lymphocyte reactivity to costimulatory molecules, providing a potential counteregulatory mechanism to control activated immune system.  相似文献   

7.
Caspase-1, the IL-1beta converting enzyme (ICE), is required for intracellular processing/maturation of IL-1beta and IL-18. NO releasing nonsteroidal antiinflammatory drugs (NSAIDs) are a new class of NSAID derivatives that spare the gastric mucosa. Here, we tested the hypothesis that NCX-4016, a NO-aspirin derivative, inhibits proinflammatory cytokine release from endotoxin (LPS)-challenged monocytes. Our results demonstrated that exposing LPS-stimulated human monocytes to NCX-4016 resulted in a 40-80% inhibition of IL-1beta, IL-8, IL-12, IL-18, IFN-gamma, and TNF-alpha release with an EC(50) of 10-20 microM for IL-1beta and IL-18. Incubating LPS-primed monocytes with NCX-4016 resulted in intracellular NO formation as assessed by measuring nitrite/nitrate, intracellular cGMP concentration, and intracellular NO formation. Exposing LPS-stimulated monocytes to aspirin or celecoxib caused a 90% inhibition of prostaglandin E(2) generation but had no effect on cytokine release. NCX-4016, similar to the NO donor S-nitroso-N-acetyl-D-L-penicillamine, inhibited caspase-1 activity with an EC(50) of approximately 20 microM. The inhibition of caspase-1 by NCX-4016 was reversible by the addition of DTT, which is consistent with S-nitrosylation as the mechanism of caspase-1 inhibition. NCX-4016, but not aspirin, prevented ICE activation as measured by assessing the release of ICE p20 subunit. IL-18 immunoneutralization resulted in a 60-80% reduction of IL-1beta, IL-8, IFN-gamma, and TNF-alpha release from LPS-stimulated monocytes. Taken together, these data indicate that incubating human monocytes with NCX-4016 causes intracellular NO formation and suppresses IL-1beta and IL-18 processing by inhibiting caspase-1 activity. Caspase-1 inhibition is a new, cycloxygenase-independent antiinflammatory mechanism of NO-aspirin.  相似文献   

8.
Aspirin induces platelet receptor shedding via ADAM17 (TACE)   总被引:3,自引:0,他引:3  
Aspirin is effective in the therapy of cardiovascular diseases, because it causes acetylation of cyclooxygenase 1 (COX-1) leading to irreversible inhibition of platelets. Additional mechanisms can be suspected, because patients treated with other platelet COX inhibitors such as indomethacin do not display an increased bleeding tendency as observed for aspirin-treated patients. Recently, aspirin and other anti-inflammatory drugs were shown to induce shedding of L-selectin in neutrophils in a metalloproteinase-dependent manner. Therefore, we investigated the effects of aspirin on the von Willebrand Factor receptor complex glycoprotein (GP) Ib-V-IX, whose lack or dysfunction causes bleeding in patients. As quantified by fluorescence-activated cell sorting analysis in whole blood, aspirin, but not its metabolite salicylic acid, induced dose-dependent shedding of human and murine GPIbalpha and GPV from the platelet surface, whereas other glycoproteins remained unaffected by this treatment. Biotinylated fragments of GPV were detected by immunoprecipitation in the supernatant of washed mouse platelets, and the expression level of GPIbalpha was decreased in these platelets as measured by Western blot analysis. Although shedding occurred normally in COX-1-deficient murine platelets, shedding was completely blocked by a broad-range metalloproteinase inhibitor and, more importantly, in mouse platelets expressing an inactive form of ADAM17. Shed fragments of GPIbalpha and GPV were elevated in the plasma of aspirin-injected mice compared with animals injected with control buffer. These data demonstrate that aspirin at high concentrations induces shedding of GPIbalpha and GPV by an ADAM17-dependent mechanism and that this process can occur in vivo.  相似文献   

9.
Platelets have been implicated in the pathogenesis of different diseases of the vascular system, including atherosclerosis, sepsis, and ischemia-reperfusion injury; however, relatively little is known about the factors that regulate the interactions between circulating platelets and the vessel wall. The objective of this study was to define the contribution of superoxide to LPS-induced platelet-endothelial cell (P/E) adhesion in murine intestinal venules. The adhesion of rhodamine-6G-labeled murine platelets was monitored by intravital fluorescence microscopy. Four hours after LPS administration in control [wild-type (WT)] mice, an approximately 10-fold increase in P/E adhesion was detected. This response did not result from LPS-induced platelet activation. The LPS-induced P/E adhesion was greatly attenuated in NAD(P)H oxidase-deficient mice and in WT mice rendered neutropenic with anti-neutrophil serum, whereas the response was unchanged in WT mice receiving a CD18 blocking MAb or in CD18-deficient mice. A chimeric form of MnSOD that exhibits the binding properties of extracellular SOD also attenuated the LPS-induced response in WT mice. These findings indicate that neutrophil-derived superoxide plays a major role in the modulation of endotoxin-induced P/E adhesion.  相似文献   

10.
Whereas the adhesion of leukocytes and erythrocytes to vascular endothelium has been implicated in the vasooclusive events associated with sickle cell disease, the role of platelet-vessel wall interactions in this process remains undefined. The objectives of this study were to: 1) determine whether the adhesion of platelets and leukocytes in cerebral venules differs between sickle cell transgenic (betaS) mice and their wild-type (WT) counterparts (C57Bl/6) under both resting and posthypoxic conditions, and 2) define the contributions of P-selectin to these adhesion processes. Animals were anesthetized, and platelet and leukocyte interactions with endothelial cells of cerebral postcapillary venules were monitored and quantified using intravital fluorescence microscopy in WT, betaS, and chimeric mice produced by transplanting bone marrow from WT or betaS mice into WT or P-selectin-deficient (P-sel(-/-)) mice. Platelet and leukocyte adhesion to endothelial cells in both unstimulated and posthypoxic betaS mice were significantly elevated over WT levels. Chimeric mice involving bone marrow transfer from betaS mice to P-sel(-/-) mice exhibited a profound attenuation of both platelet and leukocyte adhesion compared with betaS bone marrow transfer to WT mice. These findings indicate that betaS mice assume both an inflammatory and prothrombogenic phenotype, with endothelial cell P-selectin playing a major role in mediating these microvascular responses.  相似文献   

11.
We have previously reported the inhibitory effect of NCX-4016, a nitro derivative of aspirin, on the proliferation of cisplatin-resistant human ovarian cancer cells, in vitro (Bratasz et al., Proc Natl Acad Sci USA 2006; 103:3914-9). In this report we present the results of our study on the mechanistic aspects of drug action including the molecular and signaling pathways involved in an in vitro cell line, as well as in a murine tumor xenograft. We report, for the first time, that NCX-4016 significantly inhibited the growth of cisplatin-resistant human ovarian cancer xenografts in mice. We observed that the inhibitory effect of NCX-4016 on cell proliferation was associated with G1 phase cell-cycle arrest with increased activity of p53, p21 and p27 proteins. NCX-4016 modulated the Bcl-2 family of proteins, and induced apoptosis by activating Bax and cytochrome c release in a time-dependent manner. In addition, NCX-4016 selectively down-regulated the phosphorylated forms of EGFR (Tyr845, Tyr992), pAkt (Ser473, Thr305), and STAT3 (Tyr705, Ser727), in vitro and in vivo. Taken together, the results clearly suggested that NCX-4016 causes significant induction of cell-cycle arrest and apoptosis in cisplatin-resistant human ovarian cancer cells via down-regulation of EGFR/PI3K/STAT3 signaling and modulation of Bcl-2 family proteins. Thus, NCX-4016 appears to be a potential therapeutic agent for treating recurrent human ovarian carcinoma.  相似文献   

12.
The acute phase of intestinal ischemia-reperfusion (I/R) injury is mediated by leukocytes and is characterized by oxidative stress and blood cell recruitment. Upregulation of angiotensin II type 1 receptors (AT1-R) has been implicated in the pathogenesis of conditions associated with oxidative stress. The AT1-R-antagonist Losartan (Los) attenuates leukocyte recruitment following I/R. However, the role of AT1-R in intestinal I/R injury and the associated platelet-leukocyte interactions remains unclear. The objective of this study was to define the contribution of AT1-R to I/R-induced blood cell recruitment in intestinal venules. Leukocyte and platelet adhesion were quantified by intravital microscopy in the small bowel of C57Bl/6 [wild-type (WT)] mice exposed to sham operation or 45 min of ischemia and 4 h of reperfusion. A separate WT group received Los for 7 days before gut I/R (WT-I/R + Los). AT1-R bone marrow chimeras that express AT1-R on the vessel wall but not blood cells also underwent I/R. Platelet and leukocyte adhesion as well as AT1-R expression in the gut microvasculature were significantly elevated after I/R. All of these responses were attenuated in the WT-I/R + Los group, compared with untreated I/R mice. A comparable abrogation of I/R-induced blood cell adhesion was noted in AT1-R bone marrow chimeras. I/R-induced platelet adhesion was unaltered in mice overexpressing Cu,Zn-SOD or mice deficient in NAD(P)H oxidase. These data suggest that although gut I/R upregulates endothelial expression of AT1-R, engagement of these angiotensin II receptors on blood cells is more important in eliciting the prothrombogenic and proinflammatory state observed in postischemic gut venules, through a superoxide-independent pathway.  相似文献   

13.
COX-2 is involved in inflammation and ischemic cardiovascular disease. As NO regulates COX activity in various cells, we investigated the effect of NO-donors and the novel NO-aspirin NC-4016 on human monocyte COX-2. Whole blood was incubated with LPS and PGE(2) was measured in plasma as an index of monocyte COX-2 activity. Serum TxB(2) was assessed as an index of platelet COX-1 activity. SNP, DetaNONOate, and NO-aspirin inhibited dose-dependently PGE(2) production while aspirin was ineffective. The guanylyl-cyclase inhibitor ODQ partially reversed the suppression of COX-2 activity by NO-aspirin, demonstrating a role of cGMP increase. NC-4016 and aspirin inhibited platelet COX-1 comparably while NO-donors were ineffective. COX-2 expression was not affected by NO-donors or NO-aspirin while aspirin or the selective COX-2-inhibitor DUP697 increased it. In conclusion, Nitroaspirin inhibits monocyte COX-2 activity by a cGMP-dependent mechanism. This might represent an advantage over aspirin, given the possible detrimental role of COX-2 in cardiovascular disease.  相似文献   

14.
Tashima K  Fujita A  Umeda M  Takeuchi K 《Life sciences》2000,67(13):1639-1652
We compared the gastric toxic effect of aspirin (ASA) in both normal and diabetic rats, with that of NCX-4016, a derivative of ASA with nitric oxide (NO) releasing moiety. Animals were injected with streptozotocin and used after 5 weeks of diabetes with blood glucose levels of >350 mg/dl in the presence of omeprazole. Oral administration of ASA (with 150 mM HCl) did not produce damage at 30 mg/kg in the conscious rat but caused hemorrhagic gastric lesions in STZ-diabetic rats. By contrast, NCX-4016 even at 190 mg/kg (a dose equimolar to 100 mg/kg of ASA) did not cause damage in both normal and STZ-diabetic rat stomachs. Plasma salicylic acid levels were not different between normal and diabetic rats after administration of ASA or NCX-4016, though the latter gave significantly lower levels as compared to ASA. Intragastric application of ASA (80 mM in 50 mM HCl) for 30 min caused a reduction of transmucosal PD and increase of luminal H+ loss with a minimal effect on mucosal blood flow (GMBF) in both normal and diabetic rats, yet resulting in much severe damage in the stomach of the latter group. Mucosal application of NCX-4016, however, did not cause PD reduction and luminal H+ loss, but produced a marked hyperemia, resulting in no damage in the stomach of both normal and STZ-diabetic rats. The increased gastric toxicity of ASA in STZ-diabetic rats was significantly mitigated by co-application of a NO donor FK-409 together with ASA, with an increase of GMBF, despite similar degrees of PD reduction and luminal H+ loss being observed. We conclude that NCX-4016 does not have a toxic effect in either normal or diabetic rat stomachs, although the diabetic rat stomach is more vulnerable to ASA-induced damage. NCX-4016, though absorbed more slowly than ASA, counteracts the injurious effect of aspirin on the gastric mucosa, probably by increasing GMBF mediated by NO.  相似文献   

15.
The occurrence of aspirin resistance has been inferred by the assessment of platelet aggregation ex vivo in patients with ischemic vascular syndromes taking aspirin. Since aspirin is a weak inhibitor of the inducible isoform of prostaglandin H synthase (COX-2), it was suggested that COX-2 may play a role in aspirin resistance. However the cellular source(s) of COX-2 possibly responsible for aspirin resistance remains unknown. Recently, the expression of the inducible isoform of COX-2 in circulating human platelets was reported. To investigate the possible contribution of COX-2 expression in platelet thromboxane (TX) biosynthesis, we have compared the inhibitory effects of NS-398 and aspirin, selective inhibitors of COX-2 and COX-1, respectively, on prostanoid biosynthesis by thrombin-stimulated platelets vs lipopolysaccharide (LPS)stimulated monocytes (expressing high levels of COX-2) isolated from whole blood of healthy subjects. NS-398 was 180-fold more potent in inhibiting monocyte COX-2 activity than platelet TXB2 production. In contrast, aspirin (55 micromol/L) largely suppressed platelet TXB2 production without affecting monocyte COX-2 activity. By using specific Western blot techniques, we failed to detect COX-2 in platelets while COX-1 was readily detectable. Our results argue against the involvement of COX-2 in TX biosynthesis by activated platelets and consequently dispute platelet COX-2 expression as an important mechanism of aspirin resistance.  相似文献   

16.
Although platelets have been implicated in the pathogenesis of vascular diseases, little is known about factors that regulate interactions between platelets and the vessel wall under physiological conditions. The objectives of this study were to 1) define the contribution of nitric oxide (NO) to endotoxin (lipopolysaccharide, LPS)-induced platelet-endothelial cell (P/E) adhesion in murine intestinal venules and 2) determine whether the antiadhesive action of NO is mediated by soluble guanylate cyclase (sGC). Adhesive interactions between platelets and endothelial cells were monitored by intravital microscopy. LPS administration into control wild-type mice (WT) resulted in a >15-fold increase in P/E adhesion. Similar responses were observed using endothelial NO synthase (eNOS)-deficient platelets. However, treatment with the NO donor diethylenetriamine-nitric oxide (DETA-NO) attenuated the P/E adhesion response to LPS, whereas the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester or eNOS deficiency resulted in an exacerbation. P/E adhesion response did not differ between LPS-treated WT and inducible NOS-deficient mice. Inhibition of sGC abolished the attenuating effects of DETA-NO, whereas the sGC activator 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) reduced LPS-induced P/E adhesion. These findings indicate that 1) eNOS-derived NO attenuates endotoxin-induced P/E adhesion and 2) sGC is responsible for the antiadhesive action of NO.  相似文献   

17.
Although platelets have been implicated in the pathogenesis of human inflammatory bowel diseases, little is known about the magnitude of platelet accumulation in the inflamed bowel, what regulates this process, and its relevance to the overall inflammatory response. In this study, intravital video microscopy was used to monitor the trafficking of platelets and leukocytes and vascular permeability in colonic venules during the development of colonic inflammation induced by 3% dextran sodium sulfate (DSS). Blocking antibodies directed against different adhesion molecules as well as P-selectin-deficient mice were used to define the adhesive determinants of DSS-induced platelet recruitment. DSS induced an accumulation of adherent platelets that was temporally correlated with the appearance of adherent leukocytes and with disease severity. Platelet adhesion and, to a lesser extent, leukocyte adhesion were attenuated by immunoblockade of P-selectin and its ligand P-selectin glycoprotein ligand-1 (PSGL-1), with contributions from both platelet- and endothelial cell-associated P-selectin. DSS induced a rapid and sustained increase in vascular permeability that was greatly attenuated in P-selectin-deficient mice. P-selectin bone marrow chimeras revealed that both endothelial cell- and platelet-associated P-selectin contribute to the P-selectin expression detected in the inflamed colonic microvasculature, with endothelial P-selectin making a larger contribution. Our findings indicate that colonic inflammation is associated with the induction of a prothrombogenic phenotype in the colonic microcirculation, with P-selectin and its ligand PSGL-1 playing a major role in the recruitment of platelets.  相似文献   

18.
Reperfusion of ischemic tissues results in development of a proinflammatory, prothrombogenic phenotype, culminating in the recruitment of leukocytes and platelets within postcapillary venules. Recent studies have indicated an interdependence of platelet and leukocyte adhesion, suggesting that heterotypic blood cell interactions may account for postischemic platelet recruitment. The objectives of this study were to 1) determine whether ischemia-reperfusion (I/R)-induced platelet recruitment is leukocyte dependent and 2) quantify the contributions of leukocytes and endothelial cells in this platelet recruitment. Intravital microscopy was used to monitor the recruitment of fluorescently labeled platelets in postcapillary venules of the small intestine after 45-min ischemia and 4-h reperfusion. To assess the leukocyte dependence of platelet adhesion, platelets from wild-type mice were infused into mice deficient in neutrophils and/or lymphocytes and mice deficient in key leukocyte adhesion molecules (CD18 and ICAM-1). These antileukocyte strategies resulted in significantly reduced platelet recruitment. Simultaneous visualization of platelets and leukocytes enabled quantification of leukocyte-dependent and endothelium-dependent platelet adhesion. It was observed that in wild-type animals 74% of I/R-induced platelet adhesion was a result of platelet-leukocyte interactions. Although the majority of adherent platelets were associated with leukocytes, <50% of adherent leukocytes were platelet bearing, suggesting that not all adherent leukocytes support platelet adhesion. These results are consistent with leukocytes playing a major role in supporting I/R-induced platelet adhesion.  相似文献   

19.
Portal hypertension (PHT) is a common complication of liver cirrhosis and significantly increases morbidity and mortality. Abrogation of PHT using NSAIDs has demonstrated that prostacyclin (PGI(2)), a direct downstream metabolic product of cyclooxygenase (COX) activity, is an important mediator in the development of experimental and clinical PHT. However, the role of COX isoforms in PGI(2) biosynthesis and PHT is not fully understood. Prehepatic PHT was induced by portal vein ligation (PVL) in wild-type, COX-1(-/-), and COX-2(-/-) mice treated with and without COX-2 (NS398) or COX-1 (SC560) inhibitors. Hemodynamic measurements and PGI(2) biosynthesis were determined 1-7 days after PVL or sham surgery. Gene deletion or pharmacological inhibition of COX-1 or COX-2 attenuated but did not ameliorate PGI(2) biosynthesis after PVL or prevent PHT. In contrast, treatment of COX-1(-/-) mice with NS398 or COX-2(-/-) mice with SC560 restricted PGI(2) biosynthesis and abrogated the development of PHT following PVL. In conclusion, either COX-1 or COX-2 can mediate elevated PGI(2) biosynthesis and the development of experimental prehepatic PHT. Consequently, PGI(2) rather then COX-selective drugs are indicated in the treatment of PHT. Identification of additional target sites downstream of COX may benefit the >27,000 patients whom die annually from cirrhosis in the United States alone.  相似文献   

20.
Aspirin inhibits thromboxane A2 (TxA2) production whereas its salicylate moiety inhibits 12-hydroxy-eiosatetraenoic acid (12-HETE) production in the platelet. The significance of the latter effect on platelet function is unclear. We examined the effects of aspirin and salicylate on (i) platelet/ collagen adhesion using 3H-adenine-labelled human platelets and collagen- coated discs, (ii) platelet aggregation induced by thrombin, collagen, ADP and arachidonic acid, and (iii) platelet TxA2 and 12-HETE synthesis as measured by radioimmunoassay and high pressure liquid chromatography respectively. Aspirin (50 μM) decreased platelet aggregation and increased platelet adhesion. The decrease in aggregation was associated with inhibition of TxA2 production and the increase in adhesion was associated with enhanced 12-HETE production. Salicylate had the opposite effects. Platelet aggregation was increased and platelet adhesion decreased. The increased aggregation was associated with enhanced TxA2 production and the decrease in aggregation was associated with inhibition of 12-HETE production. These observations suggest that 12-HETE facilitates platelet adhesion which can be altered by salicylate treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号