共查询到20条相似文献,搜索用时 15 毫秒
1.
The response to pheromone in Saccharomyces cerevisiae involves a heterotrimeric G protein composed of Gpa1p (α subunit), Ste4p (β) and Ste18p (γ). The switch II region of Gα subunits
is involved in several protein-protein interactions and an intrinsic GTPase activity. To investigate the role of this region
of Gpa1p, we have analyzed the effect of switch II mutations. The Q323 analog in Gα subunits and Ras is implicated in GTP
hydrolysis. Mutation of the Q323 residue of Gpa1p resulted in constitutive activation of the pheromone response pathway and
eliminated the ability to interact with Ste4p, consistent with a defect in GTPase activity. Mutation of residue A59 of Ras
and the analogous Gαs residue has had quite different effects. The analogous Gpa1p G321T mutation resulted in phenotypes consistent
with a less severe GTPase defect, but also led to an unexpected mating phenotype: mating was decreased in both mating types,
but the defect was 1000-fold more severe in α cells than in a cells. In addition the G321T mutation resulted in an unusual pheromone response phenotype. We discuss the possibility that
these phenotypes may reflect a differential role for the switch II region in activation by the a- and α-factor receptors.
Received: 5 June 1997 / Accepted: 21 October 1997 相似文献
2.
3.
4.
5.
Jana Hujová Jakub Sikora Robert Dobrovolny Helena Poupětová Jana Ledvinová Marta Kostrouchová Martin H?ebí?ek 《BMC cell biology》2005,6(1):5
Background
Human α-galactosidase A (α-GAL) and α-N-acetylgalactosaminidase (α-NAGA) are presumed to share a common ancestor. Deficiencies of these enzymes cause two well-characterized human lysosomal storage disorders (LSD) – Fabry (α-GAL deficiency) and Schindler (α-NAGA deficiency) diseases. Caenorhabditis elegans was previously shown to be a relevant model organism for several late endosomal/lysosomal membrane proteins associated with LSDs. The aim of this study was to identify and characterize C. elegans orthologs to both human lysosomal luminal proteins α-GAL and α-NAGA. 相似文献6.
7.
8.
9.
Masanori Ito Yoshihide Yamanashi Yu Toyoda Hiroko Izumi-Nakaseko Satoko Oda Atsushi Sugiyama Masaru Kuroda Hiroshi Suzuki Tappei Takada Satomi Adachi-Akahane 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(2):459-468
STARD10, a member of the steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) protein family, is highly expressed in the liver and has been shown to transfer phosphatidylcholine. Therefore it has been assumed that STARD10 may function in the secretion of phospholipids into the bile. To help elucidate the physiological role of STARD10, we produced Stard10 knockout mice (Stard10−/−) and studied their phenotype. Neither liver content nor biliary secretion of phosphatidylcholine was altered in Stard10−/− mice. Unexpectedly, the biliary secretion of bile acids from the liver and the level of taurine-conjugated bile acids in the bile were significantly higher in Stard10−/− mice than wild type (WT) mice. In contrast, the levels of the secondary bile acids were lower in the liver of Stard10−/− mice, suggesting that the enterohepatic cycling is impaired. STARD10 was also expressed in the gallbladder and small intestine where the expression level of apical sodium dependent bile acid transporter (ASBT) turned out to be markedly lower in Stard10−/− mice than in WT mice when measured under fed condition. Consistent with the above results, the fecal excretion of bile acids was significantly increased in Stard10−/− mice. Interestingly, PPARα-dependent genes responsible for the regulation of bile acid metabolism were down-regulated in the liver of Stard10−/− mice. The loss of STARD10 impaired the PPARα activity and the expression of a PPARα-target gene such as Cyp8b1 in mouse hepatoma cells. These results indicate that STARD10 is involved in regulating bile acid metabolism through the modulation of PPARα-mediated mechanism. 相似文献
10.
Naranjo L Lamas-Maceiras M Ullán RV Campoy S Teijeira F Casqueiro J Martín JF 《Molecular genetics and genomics : MGG》2005,274(3):283-294
The Penicillium chrysogenum oat1 gene, which encodes a class III omega-aminotransferase, was cloned and characterized. This enzyme converts lysine into 2-aminoadipic semialdehyde, and plays an important role in the biosynthesis of 2-aminoadipic acid, a precursor of penicillin and other beta-lactam antibiotics. The enzyme is related to ornithine-5-aminotransferases and to the lysine-6-aminotransferases encoded by the lat genes found in bacterial cephamycin gene clusters. Expression of oat1 is induced by lysine, ornithine and arginine, and repressed by ammonium ions. AreA-binding GATA and GATT sequences involved in regulation by ammonium, and an 8-bp direct repeat associated with arginine induction in Emericella (Aspergillus nidulans and Saccharomyces cerevisiae, were found in the oat1 promoter region. Deletion of the oat1 gene resulted in the loss of omega-aminotransferase activity. The null mutants were unable to grow on ornithine or arginine as sole nitrogen sources and showed reduced growth on lysine. Complementation of the null mutant with the oat1 gene restored normal levels of omega-aminotransferase activity and the ability to grow on ornithine, arginine and lysine. The role of the oat1 gene in the biosynthesis of 2-aminoadipic acid is discussed. 相似文献
11.
12.
13.
14.
A complete cDNA encoding the NADPH–cytochrome P450 reductase (haCPR) and its genomic sequence from the cotton bollworm Helicoverpa armigera were cloned and sequenced. The open reading frame of haCPR codes for a protein of 687 amino acid residues with a calculated molecular mass of 77.4 kDa. The haCPR gene spans over 11 kb and its coding region is interrupted by 11 introns. haCPR is ubiquitously expressed in various tissues and at various stages of development. Escherichia coli produced haCPR enzyme exhibited catalytic activity for NADPH-dependent reduction of cytochrome c, following Michaelis–Menten kinetics. The functionality of CPR was further demonstrated by its capacity to support cytochrome P450 (e.g. haCYP9A14 and chicken CYP1A5) mediated O-dealkylation activity of alkoxyresorufins. The flavoprotein-specific inhibitor (diphenyleneiodonium chloride, DPI) showed a potent inhibition to haCPR activity (IC50 = 1.69 μM). Inhibitory effect of secondary metabolites in the host plants (tannic acid, quercetin and gossypol) on CPR activity (with an IC50 value ranged from 15 to 90 μM) was also observed. 相似文献
15.
Alison K. Huttly Robert A. Martienssen David C. Baulcombe 《Molecular & general genetics : MGG》1988,214(2):232-240
Summary Within plasmid pUB110 we have identified a 1.2 kb segment necessary and sufficient for driving autonomous replication in Rec+ cells at a wild-type copy number. This region can be divided into three functionally discrete segments: a 24 base pair (bp) region that acts as an origin, a 949 bp determinant of an essential replication protein, repU, and a 358 bp incompatibility region, incA, overlapping with the repU gene. The synthesis of the IncA determinant/s proceeds in the direction opposite to that of RepU. The positively (RepU) and negatively (IncA) trans-acting products seem to be involved in the control of plasmid replication. The RepU product has an Mr of 39 kDa, could be overproduced in Escherichia coli, and binds to the pUB110 origin region. Outside the minimal replicon a cis-acting, orientation dependent, 516 bp determinant is required (i) to compete with a coexisting incompatible plasmid and (ii) for segregational stability. 相似文献
16.
17.
The high molecular weight (HMW) glutenin subunits, Dtx1.5 + Dty10, are special types of storage proteins found in Aegilops tauschii that are never found in common wheat (Triticum aestivum). This study reports the characterization of the complete open reading frames (ORFs) of the HMW glutenin genes, Dtx1.5 and Dty10, using a restrict-enzyme based method named the restricted deletion method (RDM). The Dtx1.5 and Dty10 were found to have an identical structure compared with the other published HMW glutenin genes. Comparison of the deduced protein sequences also indicated that the Dty10 in Ae. tauschii differed from its counterpart Dy10 in common wheat, by having insertions and deletions in the central repetitive domain. This result confirms the two subunits with same mobility in SDS-PAGE are different types of HMW glutenin subunits. In addition, four PCR-mediated recombinants of the Dtx1.5 and Dty10 genes were amplified using a PCR program with shorter extension time. The recombinants had a similar structure to their corresponding natural genes, but a significantly different central repetitive domain. Western blot analysis exhibited a normal expression of the recombinants in E. coli. In addition to its usefulness for studying structure and function of the HMW glutenin subunits, the PCR-mediated recombination may provide an efficient method to generate novel HMW glutenin genes for wheat breeding. 相似文献
18.
The ras superfamily of GTP binding proteins encompasses a wide range of family members, related by conserved amino-acid motifs, and act as molecular binary switches that play key roles in cellular processes. Gene duplication and divergence has been postulated as the mechanism by which such family members have evolved their specific functions. We have cloned and sequenced a ras-like gene, tbrlp, from the primitive eukaryote Trypanosoma brucei. The gene encodes a protein of 227 amino acids and contains the six conserved subdomains that designate it as a ras/rap subfamily member. However, the presence of key diagnostic residues characteristic of both the ras and rap families of GTP confuse the familial classification of this gene. Phylogenetic analysis of the GTP binding domain places its origins at the divergence point of the ras/rap families and suggests that tbrlp is an ancestral gene to the ras/rap genes of higher eukaryotes. 相似文献
19.
20.
Summary The response of Nicotiana tabacum to tentoxin (chlorosis) is inherited with chloroplasts. N. tabacum var. Xanthi, a tentoxin-resistant line, was used to pollinate tentoxin-sensitive N. tabacum line 92, an alloplasmic male-sterile line containing N. undulata plastids. The seeds were mutagenized with nitrosomethylurea and germinated in the presence of tentoxin. Two percent of the seedlings had green sectors in their first true leaves. These plants were grown to maturity under non-selective conditions. Homogeneous tentoxin-resistant lines were obtained in the third generation. DNA analysis indicated, however, that selection for paternal plastids, rather than mutagenesis of maternal ones, had occurred in the tentoxin-resistant progeny. Mitochondria, which were not under selection pressure, were inherited maternally as expected. Inheritance of tentoxin-resistant paternal plastids did not require seed mutagenesis. Normally germinated seedlings that were kept under tentoxin selection consistently produced a low level of resistant green sectors in their first true leaves. Thus, normal, low-frequency transmission of paternal plastids in N. tabacum can be directly revealed by using tentoxin. 相似文献