首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cahoon  Cori K.  Libuda  Diana E. 《Chromosoma》2019,128(3):199-214

Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.

  相似文献   

2.
L. Sandler  Paul Szauter 《Genetics》1978,90(4):699-712
Crossing over was measured on the normally achiasmate fourth chromosome in females homozygous for one of our different recombination-defective meiotic mutants. Under the influence of those meiotic mutants that affect the major chromosomes by altering the spatial distribution of exchanges, meiotic fourth-chromosome recombinants were recovered irrespective of whether or not the meiotic mutant decreases crossing over on the other chromosomes. No crossing over, on the other hand, was detected on chromosome 4 in either wild type or in the presence of a meiotic mutant that decreases the frequency, but does not affect the spatial distribution, of exchange on the major chromosomes. It is concluded from these observations that (a) in wild type there are regional constraints on exchange that can be attenuated or eliminated by the defects caused by recombination-defective meiotic mutants; [b] these very constraints account for the absence of recombination on chromosome 4 in wild type; and [c] despite being normally achiasmate, chromosome 4 responds to recombination-defective meiotic mutants in the same way as do the other chromosomes.  相似文献   

3.
M. C. Zetka  A. M. Rose 《Genetics》1995,141(4):1339-1349
Meiotic crossovers are not randomly distributed along the chromosome. In Caenorhabditis elegans the central portions of the autosomes have relatively few crossovers compared to the flanking regions. We have measured the frequency of crossing over for several intervals across chromosome I in strains mutant for rec-1. The chromosome is ~50 map units in both wild-type and rec-1 homozygotes, however, the distribution of exchanges is very different in rec-1. Map distances expand across the gene cluster and contract near the right end of the chromosome, resulting in a genetic map more consistent with the physical map. Mutations in two other genes, him-6 and him-14, also disrupted the distribution of exchanges. Unlike rec-1, individuals homozygous for him-6 and him-14 had an overall reduction in the amount of crossing over accompanied by a high frequency of nondisjunction and reduced egg hatching. In rec-1; him-6 and rec-1; him-14 homozygotes the frequency of crossing over was characteristic of the Him mutant phenotype, whereas the distribution of the reduced number of exchanges was characteristic of the Rec-1 pattern. It appears that these gene products play a role in establishing the meiotic pattern of exchange events.  相似文献   

4.
Meiotic chromosome segregation must occur with high fidelity in order to prevent the generation of aneuploid cells. We have previously described the identification and genetic characterization of a yeast mutant with defects in meiotic sister-chromatid segregation. We attributed the phenotype in this mutant to a dominant allele, which we referred to as SID1-1. These mutants appeared to exhibit high levels of nondisjunction and precocious separation of sister-chromatids of chromosome III, as well as precocious separation of sister chromatids of chromosome VIII and a univalent artificial chromosome. We show here that the unusual meiotic behavior of chromosome III in these strains is due to the presence of a ring III chromosome, rather than a mutant gene. Additional experiments demonstrate that a ring III/rod III pair alters the meiotic segregation of a univalent artificial chromosome.  相似文献   

5.
The REC104 gene was initially defined by mutations that rescued the inviability of a rad52 spo13 haploid strain in meiosis. We have observed that rec104 mutant strains undergo essentially no induction of meiotic gene conversion, and we have not been able to detect any meiotic crossing over in such strains. The REC104 gene has no apparent role in mitosis, since mutations have no observable effect on growth, mitotic recombination, or DNA repair. The DNA sequence of REC104 reveals that it is a previously unknown gene with a coding region of 549-bp, and genetic mapping has localized the gene to chromosome VIll near FUR1. Expression of the REC104 gene is induced in meiosis, and it appears that the gene is not transcribed in mitotic cells. Possible roles for the REC104 gene product in meiosis are discussed. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Based on a particular formation of the chromocenter and trivalents in triploid Drosophila females, as well as on asynapsis in pericentromeric regions (which is a result of trivalent competition), an explanation for the increased frequency of crossing over and nonrandom segregation of the X chromosomes and autosomes in the first meiotic division is suggested. It is proposed that a delay in pairing of the pericentromeric heterochromatic chromosome regions combined into a single chromocenter leads to the following: (1) formation of the heteroduplex structures (X structures) takes more time and, consequently, their number and the frequency of crossing over in the paired chromosome regions increases; (2) in nonhomologous chromosomes, the chromocentral connections, which normally degrade in prometaphase, are retained to fulfill a function of coorientation during the first meiotic division.  相似文献   

7.
Petter Portin 《Genetica》2010,138(3):333-342
The mus309 gene in Drosophila melanogaster encodes a RecQ helicase which is involved in DNA double-strand break (DSB) repair. In a brood pattern analysis, it was observed that in mus309 mutant females, the frequency of single crossovers in the central cv–v interval of the X chromosome was reduced in young females but returned to the level of the wild type control as the females aged. In the proximal v–f interval, the frequency of single crossovers was increased during the entire experimental period. In particular, it was observed that the frequency of double crossovers, as well as the coefficient of coincidence first increased but then gradually decreased, finally reaching the level of the control flies, as the females aged. Map distances increased due to the mus309 mutation in both gene interval studies, but they did not change as the females aged, a result suggesting that the mus309 gene controls the distribution of DSBs to be repaired as crossovers instead of non-crossovers. The results suggest a mechanism for the centromere effect of crossing over in Drosophila, viz the fact the frequency of meiotic crossing over reduces with the age of the female, and that the reduction is more pronounced the closer the interval is to the proximal heterochromatin of the chromosome arm. According to the model suggested, the centromere effect is simply a matter of the balance between different pathways of the repair of the DSBs of DNA.  相似文献   

8.
Meiotic recombination is a critical genetic process as well as a pivotal evolutionary force. Rates of crossing over are highly variable within and between species, due to both genetic and environmental factors. Early studies in Drosophila implicated female genetic background as a major determinant of crossover rate and recent work has highlighted male genetic background as a possible mediator as well. Our study employed classical genetics to address how female and male genetic backgrounds individually and jointly affect crossover rates. We measured rates of crossing over in a 33 cM region of the Drosophila melanogaster X chromosome using a two‐step crossing scheme exploiting visible markers. In total, we measured crossover rates of 10 inbred lines in a full diallel cross. Our experimental design facilitates measuring the contributions of female genetic background, male genetic background, and female by male genetic background interaction effects on rates of crossing over in females. Our results indicate that although female genetic background significantly affects female meiotic crossover rates in Drosophila, male genetic background and the interaction of female and male genetic backgrounds have no significant effect. These findings thus suggest that male‐mediated effects are unlikely to contribute greatly to variation in recombination rates in natural populations of Drosophila.  相似文献   

9.
The meiotic cytological behavior of chromosomes in maize microsporocytes homozygous for the recessive mutant desynaptic was studied at various stages. It was found that following apparently normal pachytene synapsis there appears to be sporadic precocious desynapsis. By diakinesis bivalents heterozygous for a distal knob have often separated to pairs of univalents, each with a knob-carrying and a knobless chromatid. From the frequency of such events it is inferred that the crossover process is probably not affected by the mutant and that the genetic defect affects instead a distinct function concerned with chiasma maintenance following crossing over. Since precocious separation of dyads to monads at prophase II was also found in the desynaptic material, it is suggested that normal chiasma maintenance until anaphase I and normal dyad integrity maintenance between anaphase I and anaphase II may depend upon the same mechanism; it is also suggested that this may involve a special tendency for cohesiveness of sister chromatids during meiosis, beyond that which is ordinarily found at mitosis.  相似文献   

10.
Summary A mutation (rec) confering low mitotic recombination in a haploid of Aspergillus nidulans carrying the duplication I pab y adE8 bi +/IIdy y + adE20 bi was tested for its effect on mitotic recombination in diploids and on meiosis. The method involved the building of strains that on mating in pairwise combinations can give heterokaryons and diploids homozygous for different sets of chromosomes coming from the rec strain. Three such diploids were tested so far, in which no effect on recombination frequency was found; it means that if rec affects diploids it is not located on linkage groups III, IV, V, or VII. The strains for building the other diploids have been constructed. The construction of a diploid homozygous for linkage group I from the rec parent required a transfer of the duplicated segment y + adE20 bi from chromosome II to its original place on chromosome I. A method for this transfer involving two-step selection is described.A mutation (pop) confering very high mitotic-recombination frequency was found to have a profound effect on crossing over in diploids: all the asexual spores show at least one crossing-over event. The high recombination could be due to the effect of pop on chromosome exchange per se, or on chromosome pairing and thus indirectly on exchange. A test designed to support the second hypothesis failed to supply this support. Since there are other results supporting the first hypothesis it is concluded that pop has a direct effect on mitotic crossing over. The possible uses of pop mutants for mitotic genetic mapping, and for testing whether mitotic crossing over is a special case of sister-strand exchange, are discussed.  相似文献   

11.
Paul Szauter 《Genetics》1984,106(1):45-71
The frequency of crossing over per unit of physical distance varies systematically along the chromosomes of Drosophila melanogaster . The regional distribution of crossovers in a series of X chromosomes of the same genetic constitution, but having different sequences, was compared in the presence and absence of normal genetically mediated regional constraints on exchange. Recombination was examined in Drosophila melanogaster females homozygous for either normal sequence X chromosomes or any of a series of X chromosome inversions. Autosomally, these females were either (1) wild type, (2) homozygous for one of several recombination-defective meiotic mutations that attenuate the normal regional constraints on exchange or (3) heterozygous for the multiply inverted chromosome TM2. The results show that the centromere, the telomeres, the heterochromatin and the euchromatic-heterochromatic junction do not serve as elements that respond to genic determinants of the regional distribution of exchanges. Instead, the results suggest that there are several elements sparsely distributed in the X chromosome euchromatin. Together with the controlling system affected by recombination-defective meiotic mutations, these elements specify the regional distribution of exchanges. The results also demonstrate that the alteration in the distribution of crossovers caused by inversion heterozygosity (the interchromosomal effect) results from the response of a normal controlling system to an overall increase in the frequency of crossing over, rather than from a disruption of the system of regional constraints on exchange that is disrupted by meiotic mutations. The mechanisms by which regional constraints on exchange might be established are discussed, as is the possible evolutionary significance of this system.  相似文献   

12.
We have used the polymerase chain reaction (PCR) method to monitor meiotic recombination in the basidiomycete Coprinus cinereus. We used DNA-mediated transformation to recover strains with modifications of the trp1 locus. The modifications were designed to introduce unique PCR priming sites separated by a homologous 2.4 kb region in which crossing over could occur. We showed that exchange occurred in this region at the frequency expected for a typical region of this genome (2.4 kb should correspond to a genetic length of 0.08 cM). We also detected products resulting from crossing over in DNAs extracted from cells in meiotic prophase. The assay should be useful for monitoring exchange in mutants that cannot complete meiosis. Received: 5 September 1996 / Accepted: 1 December 1996  相似文献   

13.
Conventional types of cytogenetic studies with the mealybug, Planococcus citri (Risso), are possible with the use of genetic markers and meiotic analysis in the female. The loci of an eye-color mutant, salmon, and a wing-shape mutant, banjo, are linked with about 22 per cent recombination. These markers have been used in the identification and maintenance of lethals and rearrangements. All the cytologically identifiable rearrangements have proved to be reciprocal translocations, some symmetric, others, grossly asymmetric or otherwise complicated. No simple breakage products have been recovered. On the basis of their effects on crossing over, some of the lethals are believed to be associated with small rearrangements. The bivalents normally have one chiasma; only 1.2 per cent have two. Interference is decidedly decreased in chiasma formation in translocation heterozygotes, and in genetic recombination with suspected small rearrangements associated with lethals; it is also decreased, but less markedly, in genetic recombination with lethals in translocations. These various results are discussed in relationship to the holokinetic nature of the coccid chromosome, and natural increases in coccid chromosome number, as well as in regard to the effect of rearrangements on interference.Supported by grants from the National Science Foundation, currently GB 8196, and by a professorship (1968–69) for the senior author in the Miller Institute for Basic Research in Science.Dedicated to Dr. Sally Hughes-Schrader on the occasion of her seventy-fifth birthday.  相似文献   

14.
P. Portin  M. Rantanen 《Genetica》1990,82(3):203-207
The second chromosome inversion In (2L+2R) Cy in a heterozygous condition was studied for its effect on frequency and interference of crossing over in three different regions of the X chromosome of Drosophila melanogaster. A significant increase in crossing over frequency was observed in the proximal and distal regioins of the X chromosome while in the middle of the chromosome crossing over frequency remained unaltered. The effect on interference remained unaltered at both ends of the X chromosome while a significant decrease was observed in the middle of the chromosome. These results suggest that the interchromosomal effect on crossing over affects the preconditions of exchange differently in different regions of the X chromosome, and possibly the duration of chromosome pairing.  相似文献   

15.
A mutant at the yeast MED1 locus was isolated in a screen for sporulation-proficient, meiotic-lethal mutants. Synaptonemal complex formation in the med1 mutant is apparently normal and med1 strains undergo meiotic crossing over at approximately 50% of the wild-type level. The med1 mutant undergoes homolog nondisjunction at meiosis I, presumably as a consequence of the decrease in crossing over. In addition, the mutant undergoes precocious separation of sister chromatids, resulting in chromosome missegregation at both meiotic divisions. We suggest that the med1 mutation perturbs chromosome structure, leading to a reduction in recombination and a defect in sister chromatid cohesion.  相似文献   

16.
The process of basidiospore formation in a mutant strain Fisc of Coprinus macrorhizus, a heterothallic species of Basidiomycete, which forms monokaryotic fruiting bodies was examined. A single nucleus in a young basidium divided mitotically and two daughter nuclei were fused subsequently. The fused nucleus then divided meiotically forming four basidiospores on a basidium. The typical chromosome behaviours in the first meiotic prophase were observed. Synaptonemal complexes were observed in a basidium at the first meiotic prophase. A continuous illumination of fruiting bodies was effective to arrest meiosis in monokaryotic fruiting bodies at the particular stage of meiotic division.  相似文献   

17.
Allopolyploid wheat (Triticum aestivum L.) carries three pairs of homoeologous genomes but its meiotic pairing is diploid-like. This is the effect of the Ph (pairing homoeologous) system which restricts chromosome pairing to strictly homologous. Ph1 is the locus with the strongest effect. Disabling Ph1 permits pairing between homoeologues and is routinely used in chromosome engineering to introgress alien variation into breeding stocks. Whereas the efficiency of Ph1 and the general pattern of homoeologous crossovers in its absence are quite well known from numerous studies, other characteristics of such crossovers remain unknown. This study analyzed the crossover points in four sets of the ph1b-induced recombinants between wheat homologues as well as between three wheat and rye (Secale cereale) homoeologous chromosome arms, and compared them to crossovers between homologues in a reference wheat population. The results show the Ph1 locus also controls crossing over of homologues, and the general patterns of homologous (with Ph1) and homoeologous (with ph1b) crossing over are the same. In all intervals analyzed, homoeologous crossovers fell within the range of frequency distribution of homologous crossovers among individual families of the reference population. No specific DNA sequence characteristics were identified that could be recognized by the Ph1 locus; the only difference between homologous and homoeologous crossing over appears to be in frequency. It is concluded that the Ph1 locus likely recognizes DNA sequence similarity; crossing over is permitted between very similar sequences. In the absence of Ph1 dissimilarities are ignored, in proportion to the level of the sequence divergence.  相似文献   

18.
Khazanehdari KA  Borts RH 《Chromosoma》2000,109(1-2):94-102
The 5′-3′ exonuclease Exo1p from Saccharomyces cerevisiae is required for wild-type levels of meiotic crossing-over and normal meiotic chromosome segregation as is the meiosis-specific MutS homologue, Msh4p. Mutations in both genes reduce crossing-over by approximately two-fold, but Δmsh4 strains have significantly lower viability and a higher frequency of meiosis I non-disjunction. Epistasis analysis indicates a complex interaction between the two genes. Although crossing-over was not detectably lower in the double mutant, viability was significantly worse than either single mutant. Such a result suggests that the two genes are affecting meiotic viability by distinct mechanisms. We propose that Δexo1 affects chromosome segregation by reducing crossing-over, while Δmsh4 affects both the frequency and distribution of crossovers. Mutation in EXO1 reduces gene conversion frequencies significantly at some but not all loci, suggesting that other enzymes are also involved in DNA resection. We propose that Exo1p plays an early role in establishing some recombination intermediates by generating single-stranded tails. The role of Msh4p is suggested to be in determining whether some recombination intermediates are resolved as crossover events and in generating crossover interference. The synergistic effect of Δexo1Δmsh4 on spore viability suggests that the two genes have partially compensatory roles in a process affecting meiotic success. Received: 10 November 1999; in revised form: 14 January 2000 / Accepted: 14 January 2000  相似文献   

19.
C. Bazin  J. Silber  J. M. Goux 《Genetica》1983,60(2):119-122
Study of the action of aminopterin on genic recombination in Drosophila melanogaster—A study was made of the action, during meiosis, of aminopterin, inhibitor of nucleotide metabolism. An increase of the rate of crossing over was observed. This increase was studied on two systems, by using highly linked markers, so as to minimize the amount of double crossing over: vg-su, on chromosome II and y-w a, on the X chromosome. It is shown that aminopterin induces a significant increase of recombination. The independence of the two systems makes plausible that aminopterin could act on the whole genome at a meiotic level.  相似文献   

20.
The cohesin network has an essential role in chromosome segregation, but also plays a role in DNA damage repair. Eco1 is an acetyltransferase that targets subunits of the cohesin complex and is involved in both the chromosome segregation and DNA damage repair roles of the network. Using budding yeast as a model system, we find that mutations in Eco1, including a genocopy of a human Roberts syndrome allele, do not cause gross defects in chromosome cohesion. We examined how mitotic and meiotic DNA damage repair is affected by mutations in Eco1. Strains containing mutations in Eco1 are sensitive to DNA damaging agents that cause double-strand breaks, such as X-rays and bleomycin. While meiotic crossing over is relatively unaffected in strains containing the Roberts mutation, reciprocal mitotic crossovers occur with extremely low frequency in this mutant background. Our results suggest that Eco1 promotes the reciprocal exchange of chromosome arms and maintenance of heterozygosity during mitosis.Key words: cohesin, recombination, double-strand break, acetyltransferase, Roberts syndrome  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号