首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant human ribosomal protein S16 (rpS16) is shown to bind specifically to a fragment of its own pre-mRNA that includes exons 1 and 2, intron 1, and part of intron 2, and to inhibit the splicing of the fragment in vitro. The weaker binding of other recombinant human ribosomal proteins, S10 and S13, to this pre-mRNA fragment indicated that the binding of rpS16 was specific. Besides, the poly(AU) and rpS16 mRNA fragment insignificantly affected the binding of rpS16 to its pre-mRNA, providing another evidence that the interaction was specific. rpS16 specifically inhibited the splicing of the pre-mRNA fragment, whereas recombinant rpS10 and rpS13 did not affect intron excision from this pre-mRNA fragment in contrast to rpS16. Those positions in rpS16 pre-mRNA fragment that were protected by rpS16 from cleavage by RNases T1, T2, and V1 were found to be located closely to the branch point and 3’ splice site in the pre-mRNA. The obtained results suggest the possibility of the autoregulation of rpS13 pre-mRNA splicing through the feedback mechanism.  相似文献   

2.
3.
As shown by nitrocellulose filtration assays with RNA fragments transcribed from various regions of the human ribosomal protein (rp) S26 gene, recombinant rpS26 binds to the first intron of the rpS26 pre-mRNA (apparent association constant (Ka) approximately 5.0 x 10(7) M-1) and, to a lesser extent, to the rpS26 mRNA (Ka approximately 2.0 x 10(7) M-1). The binding was specific, since human rpS19 had an order of magnitude lower Ka with the first intron and did not bind with the rpS26 mRNA. Immunoassays with specific antibodies showed that rpS26 contained in the nuclear extract of HeLa cells binds to the first intron of its pre-mRNA and, less efficiently, to its mRNA. In either case, RNA binding substantially increased in the presence of recombinant rpS26. Along with other (48 K, 59 K) nuclear proteins, rpS26 was assumed to form complexes, the functional role of which is storage of pre-mRNAs inactive in splicing.  相似文献   

4.
In vitro splicing was studied for a human ribosomal protein (rp) S26 pre-mRNA fragment containing the first exon, first intron, and a part of the second exon. Splicing yielded two products, the first was corresponded to a fragment of the mature rpS26 mRNA and another was retained the 19 3'-terminal nucleotides of the first intron between the first and second exons. Recombinant rpS26 inhibites generation of both splicing products in vitro. The inhibition was specific, because another recombinant human rp, S19, had no effect on the splicing of the pre-mRNA fragment. Toe-printing was used to map the spS26-binding sites of the per-mRNA within the regions of the conventional and alternative 3' splicing sites of the first intron. On the strength of the rusults, rpS26 was assumed to regulate the expression of its own gene at the level of pre-mRNA splicing via a feedback mechanism.  相似文献   

5.
6.
7.
Recombinant human ribosomal protein (rp) S13 was shown to specifically bind with its own pre-mRNA fragment containing the first exon, first intron, second exon, and a part of the second intron and to inhibit its splicing in vitro. The binding of rpS13 was specific: recombinant human rpS10 and rpS16 bound with the fragment to a lower extent. Moreover, rpS13 binding with the rpS13 pre-mRNA fragment was inhibited by non-labeled poly(AU) and an adenovirus pre-mRNA fragment to a lower extent than by the nonlabeled rpS13 pre-mRNA fragment. The specificity of splicing inhibition was inferred from the finding that, in contrast to rpS13, recombinant rpS10 and rpS16 did not affect the efficiency of first intron excision from the rpS13 pre-mRNA fragment. Enzymatic footprinting was used to determine the rpS13 pre-mRNA nucleotides whose accessibility to RNases T1, T2, and V1 changed in the presence of rpS13. Such nucleotides were detected close to the 5′ and 3′ splicing sites of the first intron. Analysis with the EMBOS-Align program showed that the nucleotide sequence of the first intron of the mammalian rpS13 pre-mRNA is conserved to a greater extent as compared with the other introns. It was assumed that the first intron plays an important role in regulating the expression of the rpS13 gene at the splicing level in all mammals.  相似文献   

8.
9.
10.
Human ribosomal protein S13 inhibits splicing of the own pre-mRNA   总被引:1,自引:0,他引:1  
Recombinant human ribosomal protein S13 (rpS 13) is shown to bind specifically a fragment of its own pre-mRNA that includes exons 1 and 2, intron 1, and part of intron 2, and to inhibit the splicing of that fragment in vitro. The weaker binding of other recombinant human ribosomal proteins, S10 and S16, to this pre-mRNA fragment indicated that the binding of rpS 13 was specific. Besides, poly(AU) and adenovirus pre-mRNA fragment affected poorly the binding of rpS 13 to S13 pre-mRNA, providing another evidence that the interaction was specific. RpS 13 specifically inhibited the pre-mRNA splicing whereas recombinant rpS10 and rpS16 did not affect excision of intron from S13 pre-mRNA fragment in contrast to rpS 13. Those positions in S13 pre-mRNA that were protected by rpS13 protein against cleavage by RNases T1, T2 and V1 were found to be located closely to the 5' and 3' splice sites in the pre-mRNA. Intron 1 in S13 pre-mRNA is more highly conserved within mammals than the other introns in S13 pre-mRNA, which supports the possibility of an important role for intron 1 in the regulation of expression of rpS13 gene in mammals.  相似文献   

11.
12.
Dog thyroid contractile proteins are characterized by their ATPase activity at high KCl concentration. In the presence fo Ca2+, 80 nmol ATP are hydrolyzed per min per mg protein. This Ca2+-ATPase activity is inhibited by Mg2+ but not influenced by sodium azide.The 26 000 molecular weight protein which is present in thyroid contractile protein preparations and the phosphorylation of which is stimulated by thyroid stimulating hormone (TSH) is suggested to be identical to the lysine-rich histones (H1). Indeed, radioactive thyroid H1 histones added to unlabelled thyroid slices copurify with the contractile proteins and migrate at the same level as the 26 000 molecular weight protein when submitted to electrophoresis in polyacrylamide sodium dodecyl sulfate gels of different acrylamide concentrations.  相似文献   

13.
A protein kinase, specific for 60S ribosomal proteins, has been isolated from Saccharomyces cerevisiae cells, purified to almost homogeneity and characterized. The isolated enzyme is not related to other known protein kinases. Enzyme purification comprised three chromatography steps; DEAE-cellulose, phosphocellulose and heparin-Sepharose. SDS/PAGE analysis of the purified enzyme, indicated a molecular mass of around 71 kDa for the stained single protein band. The specific activity of the protein kinase was directed towards the 60S ribosomal proteins L44, L44', L45 and a 38 kDa protein. All the proteins are phosphorylated only at the serine residues. None of the 40S ribosomal proteins were phosphorylated in the presence of the kinase. For that reason we have named the enzyme the 60S kinase. An analysis of the phosphopeptide maps of acidic ribosomal proteins, phosphorylated at either the 60S kinase or casein kinase II, showed almost identical patterns. Using the immunoblotting technique, the presence of the kinase has been detected in extracts obtained from intensively growing cells. These findings suggest an important role played by the 60S kinase in the regulation of ribosomal activity during protein synthesis.  相似文献   

14.
Human ribosomal protein S3 (hS3) has a high apparent binding affinity for the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG). The hS3 ribosomal protein has also been found to inhibit the base excision repair (BER) enzyme hOGG1 from liberating 8-oxoG residing in a 5'-end-labeled oligonucleotide. To understand the in vivo involvement of hS3 in BER, we have turned to RNA interference to generate knockdown of hS3 in cells exposed to DNA damaging agents. Here we show that a 40% knockdown of hS3 resulted in as much as a seven-fold increase in the 24h survival-rate of HEK293 cells exposed to hydrogen peroxide. Significant protection to the alkylating agent methyl methanesulfonate (MMS) was also observed. Protection to the chemotherapeutic alkylating agent Thio-TEPA was only revealed at longer exposure times where the agent became more toxic to untransfected human cells. Overall, these results raise the possibility that hS3 interferes with the repair of the DNA lesions produced by genotoxic agents that potentially could play a role in the onset of cancer and other pathological states such as aging.  相似文献   

15.
Proteins of the large ribosomal subunit of rat liver (TP 60) were immobilized by diffusion transfer onto nitrocellulose after two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Incubation of the TP 60 blots with 32P-labeled 5 S RNA under defined ionic conditions (300 mM KCl, 20 mM MgCl2) resulted in specific binding to a limited set of ribosomal proteins consisting of proteins L3, L4, L6, L13/15 and--to a lesser extent--L7 and L19. Under identical conditions, blots with proteins of the small ribosomal subunit (TP 40) did not bind 5 S RNA.  相似文献   

16.
The interaction between the ribosomal protein S15 and its binding sites in the 16S RNA was examined from two points of view. First, the isolated protein S15 was studied by comparing NMR conformer sets, available in the PDB and recalculated using the CNS-ARIA protocol. Molecular dynamics (MD) trajectories were then recorded starting from a conformer of each set. The recalculation of the S15 NMR structure, as well as the recording of MD trajectories, reveals that several orientations of the N-terminal alpha-helix alpha1 with respect to the structure core are populated. MD trajectories of the complex between the ribosomal protein S15 and RNA were also recorded in the presence and absence of Mg(2+) ions. The Mg(2+) ions are hexacoordinated by water and RNA oxygens. The coordination spheres mainly interact with the RNA phosphodiester backbone, reducing the RNA mobility and inducing electrostatic screening. When the Mg(2+) ions are removed, the internal mobility of the RNA and of the protein increases at the interaction interface close to the RNA G-U/G-C motif as a result of a gap between the phosphate groups in the UUCG capping tetraloop and of the disruption of S15-RNA hydrogen bonds in that region. On the other hand, several S15-RNA hydrogen bonds are reinforced, and water bridges appear between the three-way junction region and S15. The network of hydrogen bonds observed in the loop between alpha1 and alpha2 is consequently reorganized. In the absence of Mg(2+), this network has the same pattern as the network observed in the isolated protein, where the helix alpha1 is mobile with respect to the protein core. The presence of Mg(2+) ions may thus play a role in stabilizing the orientation of the helix alpha1 of S15.  相似文献   

17.
Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion.  相似文献   

18.
Dog thyroid contractile proteins are characterized by their ATPase activity at high KCl concentration. In the presence of Ca(2+), 80 nmol ATP are hydrolyzed per min per mg protein. This Ca(2+) -ATPase activity is inhibited by Mg(2+) but not influenced by sodium azide. The 26 000 molecular weight protein which is present in thyroid contractile protein preparations and the phosphorylation of which is stimulated by thyroid stimulating hormone (TSH) is suggested to be identical to the lysine-rich histones (H1). Indeed, radioactive thyroid H1 histones added to unlabelled thyroid slices copurify with the contractile proteins and migrate at the same level as the 26 000 molecular weight when submitted to electrophoresis in polyacrylamide sodium dodecyl sulfate gels of different acrylamide concentrations.  相似文献   

19.
A comparative study of the 30S ribosomal subunit in the complex with protein S1 and the subunit depleted of this protein has been carried out by the hot tritium bombardment method. Differences in exposure of some ribosomal proteins within the 30S subunit depleted of S1 and within the 30S–S1 complex were found. It was concluded that protein S1 binds in the region of the neck of the 30S ribosomal subunit inducing a conformational change of its structure.  相似文献   

20.
Ribosomal protein S7 is one of the ubiquitous components of the small subunit of the ribosome. It is a 16S rRNA-binding protein positioned close to the exit of the tRNA, and it plays a role in initiating assembly of the head of the 30S subunit. Previous structural analyses of eubacterial S7 have shown that it has a stable alpha-helix core and a flexible beta-arm. Unlike these eubacterial proteins, archaebacterial or eukaryotic S7 has an N-terminal extension of approximately 60 residues. The crystal structure of S7 from archaebacterium Pyrococcus horikoshii (PhoS7) has been determined at 2.1 A resolution. The final model of PhoS7 consists of six major alpha-helices, a short 3(10)-helix and two beta-stands. The major part (residues 18-45) of the N-terminal extension of PhoS7 reinforces the alpha-helical core by well-extended hydrophobic interactions, while the other part (residues 46-63) is not visible in the crystal and is possibly fixed only by interacting with 16S rRNA. These differences in the N-terminal extension as well as in the insertion (between alpha1 and alpha2) of the archaebacterial S7 structure from eubacterial S7 are such that they do not necessitate a major change in the structure of the currently available eubacterial 16S rRNA. Some of the inserted chains might pass through gaps formed by helices of the 16S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号