首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pei XQ  Yi ZL  Tang CG  Wu ZL 《Bioresource technology》2011,102(3):3337-3342
Thermostability of β-glucosidase was enhanced by family shuffling, site saturation mutagenesis, and site-directed mutagenesis. Family shuffling was carried out based on β-glucosidase BglC from Thermobifida fusca and β-glucosidase BglB from Paebibacillus polymxyxa with the help of synthetic primers. High-throughput screening revealed mutants with higher thermostability than both parental enzymes. The most thermostable mutant VM2 containing three key amino acid changes in L444Y/G447S/A433V had a 144-fold increase in half-life of inactivation as compared to the parental enzyme BglC. The mutant VM2 showed 28% and 94% increase in k(cat) towards p-nitrophenyl-β-D-glucopyranoside (pNPG) and cellobiose, respectively. The mutant with enhanced stability would facilitate the recycle of β-glucosidase in the bioconversion of cellulosic biomass.  相似文献   

2.
固定化纤维二糖酶的研究   总被引:5,自引:0,他引:5  
黑曲霉 (AspergillusnigerLORRE 0 12 )的孢子中富含纤维二糖酶 ,将这些孢子用海藻酸钙凝胶包埋后 ,可以方便有效地固定纤维二糖酶。固定化后的纤维二糖酶性能稳定 ,半衰期为 38d ,耐热性和适宜的pH范围均比固定化前有所增加 ,其Km 和Vmax值分别为 6 .0 1mmol L和 7.0 6mmol (min·L)。利用固定化纤维二糖酶重复分批酶解10g L的纤维二糖 ,连续 10批的酶解得率均可保持在 97%以上 ;采用连续酶解工艺 ,当稀释率为 0 .4h- 1 ,酶解得率可达 98.5 %。玉米芯经稀酸预处理后 ,其纤维残渣用里氏木霉 (Trichodermareesei)纤维素酶降解 ,酶解得率为6 9.5 % ;通过固定化纤维二糖酶的进一步作用 ,上述水解液中因纤维二糖积累所造成的反馈抑制作用得以消除 ,酶解得率提高到 84.2 % ,还原糖中葡萄糖的比例由 5 3 .6 %升至 89.5 % ,该研究结果在纤维原料酶水解工艺中具有良好的应用前景。  相似文献   

3.
W Chen  W D Frasch 《Biochemistry》2001,40(25):7729-7735
Site-directed mutants Y317C, Y317E, Y317F, Y317G, and Y317K were made to the catch-loop tyrosine on the beta subunit of the chloroplast F(1)-ATPase in Chlamydomonas. EPR spectra of VO(2+)-ATP bound to site 3 of CF(1) from wild type and mutants were obtained. Every mutant changed the (51)V hyperfine parameters of the VO(2+) bound at this site in the catalytically active conformation of the enzyme but had no effect on these parameters in the form that predominates when the enzyme activity is latent. These results indicate that this residue is a ligand to the metal of the Mg(2+)-nucleotide complex that binds to the empty catalytic site. The mutations also decreased the k(cat) of the ATPase activity to a much greater extent than k(cat)/K(M). Thus, these mutations limit the rate of product (Mg(2+)-ADP and phosphate) release in the ATPase direction or, conversely, the initial binding of substrates in the ATP synthesis direction. On the basis of these observations, coordination of betaY317 by Mg(2+)-ADP that binds to the empty catalytic site provides a means by which substrate binding could trigger gamma subunit rotation and consequent conformation changes of beta subunits during ATP synthesis.  相似文献   

4.
We used the autodisplay system AIDA-I, which belongs to the type V secretion system (TVSS), to display the β-glucosidase BglC from Thermobifida fusca on the outer membrane of the ethanologenic Escherichia coli strain MS04 (MG1655 ?pflB, ?adhE, ?frdA, ?xylFGH, ?ldhA, PpflB::pdc (Zm)-adhB (Zm)). MS04 that was transformed with the plasmid pAIDABglCRHis showed cellobiase activity (171 U/g(CDW)) and fermented 40 g/l cellobiose in mineral medium in 60 h with an ethanol yield of 81 % of the theoretical maximum. Whole-cell protease treatment, SDS-PAGE, and Western-blot analysis demonstrated that BglC was attached to the external surface of the outer membrane of MS04. When attached to the cells, BglC showed 93.3 % relative activity in the presence of 40 g/l ethanol and retained 100 % of its activity following 2 days of incubation at 37 °C with the same ethanol concentration. This study shows the potential of the TVSS (AIDA-I) and BglC as tools for the production of lignocellulosic bio-commodities.  相似文献   

5.
To investigate the roles of tyrosyl residues located near the covalent 8alpha-S-cysteinyl FAD in monoamine oxidase A (MAO A) and to test the suggestion that MAO A and plant polyamine oxidase may have structural homology, tyrosyl to phenylalanyl mutants of MAO A at positions 377, 402, 407, 410, 419, and 444 were constructed and expressed in Saccharomyces cerevisiae. All mutant enzymes were expressed and exhibited lower specific activities as compared to WT MAO A using kynuramine as substrate. The lowest specific activities in this assay are exhibited by the Y407F and Y444F mutant enzymes. On purification and further characterization, these two mutants were found to each contain covalent FAD. Both mutant enzymes are irreversibly inhibited by the MAO A inhibitor clorgyline and exhibit binding stoichiometries of 0.54 (Y407F) and 0.95 (Y444F) as compared to 1.05 for WT MAO A. Y444F MAO A oxidizes kynuramine with a k(cat) <2% of WT enzyme and is greater than 100-fold slower in catalyzing the oxidation of phenylethylamine or of serotonin. In contrast, Y444F MAO A oxidizes p-CF(3)-benzylamine at a rate 25% that of WT enzyme. Steady state and reductive half-reaction stopped-flow data using a series of para-substituted benzylamine analogues show Y444F MAO A exhibits quantitative structure activity relationships (QSAR) properties on analogue binding and rates of substrate oxidation very similar to that exhibited by the WT enzyme (Miller and Edmondson (1999) Biochemistry 38, 13670): log K(d) = -(0.37 +/- ()()0.07)V(W)(x0.1) - 4.5 +/- 0.1; log k(red) = +(2.43 +/- 0.19)sigma + 0.17 +/- 0.05. The Y444F MAO A mutant also exhibits similar QSAR properties on the binding of phenylalkyl side chain amine analogues as WT enzyme: log K(i) = (4.37 +/- 0.51)E(S) + 1.21 +/- 0.77. These data show that mutation of Y444F in MAO A results in a mutant that has lost its ability to efficiently oxidize serotonin (its physiological substrate) but, however, exhibits unaltered quantitative structure-activity parameters in the binding and rate of benzylamine analogues. The mechanism of C-H abstraction is therefore unaltered. The suggestion that polyamine oxidase and monoamine oxidase may have structural homology appears to be valid as regards Y444 in MAO A and Y439 in plant polyamine oxidase.  相似文献   

6.
Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.  相似文献   

7.
Cellobiase (CE 3.2.1.21) is a β-glucosidase which hydrolyzes cellobiose to glucose and is known to be subject to both product and substrate inhibition. This work report a model which combines both product and substrate inhibition effects for cellobiase isolated from a commercial preparation of Trichoderma viride from Miles Laboratories (Elkhart, IN). An integrated rate equation is presented which predicts the trends of time courses for hydrolyses of cellobiose a t concentrations ranging from 14.6–1416mM cellobiose. The constants used in the model (determined from initial rate data) are compared to those reported for cellobiase obtained from other sources of T. Viride. Most notable in this comparison is the apparently higher activity and reduced inhibition of this enzyme compared to other sources of cellobiase.  相似文献   

8.
Liu P  Huang C  Wang HL  Zhou K  Xiao FX  Qun W 《FEBS letters》2004,577(1-2):205-208
Calcineurin (CN) is a heterodimer composed of a catalytic subunit (CNA) and a regulatory subunit (CNB). Loop 7 lies within the CNA catalytic domain. To investigate the role of Loop 7 in enzyme activity, we systematically examined all its residues by site-directed deletion mutation. Our results show that the Loop 7 residues are important for enzyme activity. Besides deleting residues V314, Y315 or N316, enzyme activity also increased dramatically when residues D313 or K318 were deleted. In contrast, almost all activity was lost when L312 or N317 were deleted. Ni2+ and Mn2+ were effective activators for all active mutants. However, whereas the wild-type enzyme was more efficiently activated by Ni2+ than by Mn2+ with 32P-labeled R(II) peptide as substrate, the reverse was true in all the mutants. We also found that the effect of Loop 7 on enzyme activity was substrate dependent, and involved interactions between Loop 7 residues and the unresolved part of the CN crystal structure near the auto-inhibitory domain and catalytic site.  相似文献   

9.
Three distinct cellobiase components were isolated from a commercial Trichoderma viride cellulase preparation by repeated chromatography on DEAE cellulose eluting by a salt gradient. The purified cellobiase preparations were evaluated for physical properties, kinetics, and mechanism. Results from this work include: 1) development of one step enzyme purification procedure using DEAE-cellulose; 2) isolation of three chromatographically distinct, yet kinetically similar, cellobiase fractions of molecular weight of approximately 76,000; 3) determination of kinetics which shows that cellobiase hydrolyzes cellobiose by a noncompetitive mechanism and that the product, glucose, inhibits the enzyme, and 4) development of an equation, based on the mechanism of cellobiase action, which accurately predicts the time course of cellobiose hydrolysis over an eightfold range of substrate concentration and conversions of up to 90%. Based on the data presented in the paper, it is shown that product inhibition of cellobiase significantly retards the rate of cellobiose hydrolysis.  相似文献   

10.
Cellobiase from Aspergillus niger was glycosylated by covalent coupling to cyanogen bromide activated dextran. The conjugated enzyme retained 62% of the original specific activity exhibited by the native cellobiase. The optimum pH as well as the pH stability of the conjugated form remain almost the same as for the native enzyme. Compared to the native enzyme, the conjugated form exhibited a higher optimal reaction temperature and energy of activation, a higher K(m) (Michaelis constant) and lower Vmax (maximal reaction rate), and improved thermal stability. The thermal deactivation of the native and conjugated cellobiase obeyed the first-order kinetics. The calculated half-life values of heat inactivation at 60, 70 and 80 degrees C was 10.7, 6.25, and 4.05 h, respectively, whereas at these temperatures the native enzyme was less stable (half-life of 3.5, 1.69, and 0.83 h, respectively). The deactivation rate constant at 80 degrees C for the conjugated cellobiase is about 7.9 x 10(-2) h-1, which is lower than that of the native enzyme (36.0 x 10(-2) h-1). The activation energy for denaturation of the native enzyme is about 10.58 kcal/mol, which is 7.25 kcal/mol lower than that of the conjugated enzyme. The effect of different surfactants and some metal ions on the activity of the conjugated cellobiase has been investigated.  相似文献   

11.
This study reports the characterization of the recombinant 7-kDa protein P2 from Sulfolobus solfataricus and the mutants F31A and F31Y with respect to temperature and pressure stability. As observed in the NMR, FTIR, and CD spectra, wild-type protein and mutants showed substantially similar structures under ambient conditions. However, midpoint transition temperatures of the denaturation process were 361, 334, and 347 K for wild type, F31A, and F31Y mutants, respectively: thus, alanine substitution of phenylalanine destabilized the protein by as much as 27 K. Midpoint transition pressures for wild type and F31Y mutant could not be accurately determined because they lay either beyond (wild type) or close to (F31Y) 14 kbar, a pressure at which water undergoes a phase transition. However, a midpoint transition pressure of 4 kbar could be determined for the F31A mutant, implying a shift in transition of at least 10 kbar. The pressure-induced denaturation was fully reversible; in contrast, thermal denaturation of wild type and mutants was only partially reversible. To our knowledge, both the pressure resistance of protein P2 and the dramatic pressure and temperature destabilization of the F31A mutant are unprecedented. These properties may be largely accounted for by the role of an aromatic cluster where Phe31 is found at the core, because interactions among aromatics are believed to be almost pressure insensitive; furthermore, the alanine substitution of phenylalanine should create a cavity with increased compressibility and flexibility, which also involves an impaired pressure and temperature resistance. Proteins 29:381–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
An extracellular beta-glucosidase was purified 154-fold to electrophoretic homogeneity from the brown-rot basidiomycete Fomitopsis palustris grown on 2.0% microcrystalline cellulose. SDS-polyacrylamide gel electrophoresis gel gave a single protein band and the molecular mass of purified enzyme was estimated to be approximately 138 kDa. The amino acid sequences of the proteolytic fragments determined by nano-LC-MS/MS suggested that the protein has high homology with fungal beta-glucosidases that belong to glycosyl hydrolase family 3. The Kms for p-nitorophenyl-beta-D-glucoside (p-NPG) and cellobiose hydrolyses were 0.117 and 4.81 mM, and the Kcat values were 721 and 101.8 per sec, respectively. The enzyme was competitively inhibited by both glucose (Ki= 0.35 mM) and gluconolactone (Ki= 0.008 mM), when p-NPG was used as substrate. The optimal activity of the purified beta-glucosidase was observed at pH 4.5 and 70 degrees. The F. palustris protein exhibited half-lives of 97 h at 55 degrees and 15 h at 65 degrees, indicating some degree of thermostability. The enzyme has high activity against p-NPG and cellobiose but has very little or no activity against p-nitrophenyl-beta-lactoside, p-nitrophenyl-beta-xyloside, p-nitrophenyl-alpha-arabinofuranoside, xylan, and carboxymethyl cellulose. Thus, our results revealed that the beta-glucosidase from F. palustris can be classified as an aryl-beta-glucosidase with cellobiase activity.  相似文献   

13.
Sellers VM  Wu CK  Dailey TA  Dailey HA 《Biochemistry》2001,40(33):9821-9827
The terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to form protoheme, is catalyzed by the enzyme ferrochelatase (EC 4.99.1.1). A number of highly conserved residues identified from the crystal structure of human ferrochelatase as being in the active site were examined by site-directed mutagenesis. The mutants Y123F, Y165F, Y191H, and R164L each had an increased K(m) for iron without an altered K(m) for porphyrin. The double mutant R164L/Y165F had a 6-fold increased K(m) for iron and a 10-fold decreased V(max). The double mutant Y123F/Y191F had low activity with an elevated K(m) for iron, and Y123F/Y165F had no measurable activity. The mutants H263A/C/N, D340N, E343Q, E343H, and E343K had no measurable enzyme activity, while E343D, E347Q, and H341C had decreased V(max)s without significant alteration of the K(m)s for either substrate. D340E had near-normal kinetic parameters, while D383A and H231A had increased K(m)s for iron. On the basis of these data and the crystal structure of human ferrochelatase, it is proposed that residues E343, H341, and D340 form a conduit from H263 in the active site to the protein exterior and function in proton extraction from the porphyrin macrocycle. The role of H263 as the porphyrin proton-accepting residue is central to catalysis since metalation only occurs in conjunction with proton abstraction. It is suggested that iron is transported from the exterior of the enzyme at D383/H231 via residues W227 and Y191 to the site of metalation at residues R164 and Y165 which are on the opposite side of the active site pocket from H263. This model should be general for mitochondrial membrane-associated eucaryotic ferrochelatases but may differ for bacterial ferrochelatases since the spatial orientation of the enzyme within prokaryotic cells may differ.  相似文献   

14.
Jin J  Chang J  Stafford DW  Straight DL 《Biochemistry》2001,40(38):11405-11410
We studied factor Xa activation of human factor VII in hopes of identifying factor VII residues, not adjacent to the cleavage site, involved in this interaction. We made eight factor VIIs with single mutations (N100A, H101A, D102Q, L144A, R147A, Y179A, D186A, and F256A) and two factor VIIs with multiple mutations [MM3 (L144A/R147A/D186A) and MM4 (N100A/H101A/Y179A/F256A)]. Residues in MM3 have previously been identified as affecting factor X activation, and the residues of MM4 are located at a hydrophobic patch of factor VII on the opposite side of the catalytic domain from those in MM3. Only H101A, Y179A, and MM4 were activated significantly more slowly than the wild type. Results of our kinetic analyses showed that the catalytic efficiency of factor Xa for activation of factor VII was 176- and 234-fold higher than that for H101A andY179A, respectively. All the mutants with measurable activity had affinities for tissue factor similar to those of the wild type. The activated hydrophobic patch residues, except N100A, which is adjacent to one of the catalytic residues, had normal activities toward both a small peptide substrate and factor X. The rest of the activated mutants (except D102Q with no activity) had reduced activities toward the small substrate (except R147A) and factor X. We conclude that factor VII activation by factor Xa and factor VIIa's catalytic interaction with factor X involve different regions in the catalytic domain, and residues H101 and Y179, part of an aromatic hydrophobic patch, are specifically involved in factor Xa activation of factor VII.  相似文献   

15.
Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.  相似文献   

16.
Isopentenyl-diphosphate (IPP):dimethylallyl diphosphate isomerase is a key enzyme in the biosynthesis of isoprenoids. The mechanism of the isomerization reaction involves protonation of the unactivated carbon-carbon double bond in the substrate, but identity of the acidic moiety providing the proton is still not clear. Multiple sequence alignments and geometrical features observed in crystal structures of complexes with IPP isomerase suggest that Tyr-104 could play an important role during catalysis. A series of mutants was constructed by directed mutagenesis and characterized by enzymology. Crystallographic and thermal denaturation data for Y104A and Y104F mutants were obtained. Those data demonstrate the importance of residue Tyr-104 for proper folding of Escherichia coli type I IPP isomerase.  相似文献   

17.
Rice allene oxide synthase-1 mutants carrying F92L, P430A or F92L/P430A amino acid substitution mutations were constructed, recombinant mutant and wild type proteins were purified and their substrate preference, UV–vis spectra and heme iron spin state were characterized. The results show that the hydroperoxide lyase activities of F92L and F92L/P430A mutants prefer 13-hydroperoxy substrate to other hydroperoxydienoic acids or hydroperoxytrienoic acids. The Soret maximum was completely red-shifted in P430A and F92L/P430A mutants, but it was partially shifted in the F92L mutant. ESR spectral data showed that wild type, F92L and P430A mutants occupied high and low spin states, while the F92L/P430A mutant occupied only low spin state. The extent of the red shift of the Soret maximum increased as the population of low spin heme iron increased, suggesting that the spectral shift reflects the high to low transition of heme iron spin state in rice allene oxide synthase-1. Relative to wild type allene oxide synthase-1, the hydroperoxide lyase activities of F92L and F92L/P430A are less sensitive to inhibition by imidazole with (13S or 9S)-hydroperoxydienoic acid as substrate and more sensitive than wild type with (13S)-hydroperoxytrienoic acid as substrate. Our results suggest that hydroperoxydienoic acid is the preferred substrate for the hydroperoxide lyase activity and (13S)-hydroperoxytrienoic acid is the preferred substrate for allene oxide synthase activity of allene oxide synthase-1.  相似文献   

18.
Guanine phosphoribosyltransferase from Giardia lamblia, a key enzyme in the purine salvage pathway, is a potential target for anti-giardiasis chemotherapy. Recent structural determination of GPRTase (Shi, W., Munagala, N. R., Wang, C. C., Li, C. M., Tyler, P. C., Furneaux, R. H., Grubmeyer, C., Schramm, V. L., and Almo, S. C. (2000) Biochemistry 39, 6781-6790) showed distinctive features, which could be responsible for its singular guanine specificity. Through characterizing specifically designed site-specific mutants of GPRTase, we identified essential moieties in the active site for substrate binding. Mutating the unusual Tyr-127 of GPRTase to the highly conserved Ile results in 6-fold lower K(m) for guanine. A L186F mutation in GPRTase increased the affinity toward guanine by 3. 3-fold, whereas the corresponding human HGPRTase mutant L192F showed a 33-fold increase in K(m) for guanine. A double mutant (Y127I/K152R) of GPRTase retained the improved binding of guanine and also enabled the enzyme to utilize hypoxanthine as a substrate with a K(m) of 54 +/- 15.5 microm. A triple mutant (Y127I/K152R/L186F) resulted in further increased binding affinity with both guanine and hypoxanthine with the latter showing a lowered K(m) of 29.8 +/- 4.1 microm. Dissociation constants measured by fluorescence quenching showed 6-fold tighter binding of GMP with the triple mutant compared with wild type. Thus, by increasing the binding affinity of 6-oxopurine, we were able to convert the GPRTase to a HGPRTase.  相似文献   

19.
Recently we demonstrated that overexpression of the wild type insulin-like growth factor I receptor (IGF-IRWT) in 32D myeloid progenitor cells led to cell proliferation in response to interleukin 4 (IL-4) as well as insulin-like growth factor I (IGF-I) in the absence of insulin receptor substrate expression (Soon, L., Flechner, L., Gutkind, J. S., Wang, L. H., Baserga, R., Pierce, J. H., and Li, W. (1999) Mol. Cell. Biol. 19, 3816-3828). To understand the structural importance of insulin-like growth factor I receptor (IGF-IR) in mediating IL-4- and IGF-I-induced DNA synthesis, we transfected various mutants of IGF-IR to 32D cells. Our results show that most mutants, including Y1250F, Y1251F, Y1250F/Y1251F, S1280A/S1281A/S1282A/S1283A, Y1316F, and 1245d, still retained mitogenic response toward IGF-I or IL-4. However, the Y950F, Y1131F, and Y1135F mutants were not able to respond to either ligand. The H1293F/K1294R and 1293d mutants reduced response toward IGF-I but not to IL-4. Phosphorylation of Shc was greatly reduced in those three mutants that lost mitogenic response. The MAPK activity was much lower in Y1131F and Y1135F mutants, indicating the importance of the Shc/MAPK pathway in IGF-I-induced mitogenesis. Importantly, the synergistic effect of these two factors on DNA synthesis was not affected in cells expressing most of the mutants, even in those three that had lower mitogenic response toward a single ligand. These results suggest that an unidentified pathway(s) may be induced upon co-addition of IGF-I and IL-4 that sustains the intact mitogenesis.  相似文献   

20.
It was shown that one of the cellulase components, i.e. cellobiase, can be adsorbed on cellulose surface with the concomitant decrease of activity (by 10 times and more). The specific activity of the adsorbed cellobiase depends on the enzyme concentration in the adsorption layer and is increased with the increase in the surface concentration of cellobiase. It was found that variations in the amount of non-soluble cellulose and the corresponding changes in cellobiase activity in the system (as a result of the adsorption) can lead to a certain alteration in the shape of the kinetic curves for formation of intermediate cellobiose, which in its turn controls the rate of formation of the end product, i.e. glucose. Thus, the substrate surface causes a regulatory effect on the rate and kinetic mechanism of the enzymatic conversion of cellulose to glucose due to the adsorption effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号