首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecularly imprinted polymers (MIPs) represent a new class of materials possessing high selectivity and affinity for the target molecule. Since their discovery in 1972, molecularly imprinted polymers have attracted considerable interest from bio- and chemical laboratories to pharmaceutical institutes. They have been utilized as sensors, catalysts, sorbents for solid-phase extraction, stationary phase for liquid chromatography, mimics of enzymes, receptors and antibodies. Among which, the application of molecularly imprinted polymers for molecular recognition-based separation and screening of compounds has undergone rapid extension and received much attention in recent years. This article mainly focuses on the separation and screening of certain pharmacophoric compounds of interests from biological origin using molecular imprinting technology. Examples of extraction and recognition of active components as anti-tumors or anti-Hepatitis C virus inhibitors from Chinese traditional herbs using molecularly imprinting technology are particularized in this article. Comparison between the screening effect based on MIPs and that based on antibodies is also represented. Consequently the merits and demerits of these two technologies are highlighted.  相似文献   

2.
Biomimetic testosterone receptors were synthesized via molecular imprinting for use as antibody mimics in immunoassays. As evaluated by radioligand binding assays, imprinted polymers prepared in acetonitrile were very specific for testosterone because the nonimprinted control polymers bound virtually no radiolabeled testosterone. The polymers present an appreciable affinity, with association constants of K(a) = 3.3 x 10(7) M(- 1) (high-affinity binding sites). The binding characteristics of the polymers were also evaluated in aqueous environment to study their viabilities as alternatives to antibodies in molecularly imprinted sorbent assays. Compared with the testosterone-specific antibodies present in commercial kits, our molecularly imprinted polymers are somewhat less sensitive but show a high selectivity.  相似文献   

3.
A review is presented of recent developments in the use of molecularly imprinted polymers (MIPs) as selective materials for solid-phase extraction. Compared with traditional sorbents, MIPs can not only concentrate but also selectively separate the target analytes from real samples, which is crucial for the quantitatively determination of analytes in complex samples. Consequently, as one of the most effective sorbents, MIPs have been successfully applied to the pretreatment of analytes in foods, drugs, and biological and environmental samples in the past five years.  相似文献   

4.
In this study, a novel method is described for the determination of tramadol in biological fluids using molecularly imprinted solid-phase extraction (MISPE) as the sample clean-up technique combined with high-performance liquid chromatography (HPLC). The water-compatible molecularly imprinted polymers (MIPs) were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as cross-linker, chloroform as porogen and tramadol as template molecule. The novel imprinted polymer was used as a solid-phase extraction (SPE) sorbent for the extraction of tramadol from human plasma and urine. Various parameters affecting the extraction efficiency of the polymer have been evaluated. The optimal conditions for the MIP cartridges were studied. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of tramadol. The limit of detection (LOD) and limit of quantification (LOQ) for tramadol in urine samples were 1.2 and 3.5 μg L−1, respectively. These limits for tramadol in plasma samples were 3.0 and 8.5 μg L−1, respectively. The recoveries for plasma and urine samples were higher than 91%.  相似文献   

5.
Synthesis and catalysis by molecularly imprinted materials   总被引:1,自引:0,他引:1  
Molecularly imprinted materials have been demonstrated to possess a very high degree of selectivity towards targeted substrates. In addition to such tailor-made molecular recognition, progress has been made in introducing reactive groups into the recognition sites. Putting teeth into imprinted matrices is one method of making true enzyme mimics or plastizymes, which are plastic polymer enzyme mimics.  相似文献   

6.
Zhang Z  Liao H  Li H  Nie L  Yao S 《Analytical biochemistry》2005,336(1):108-116
A piezoelectric sensor coated with a thin molecularly imprinted sol-gel film has been developed for the determination of L-histidine in the liquid phase. Without preprotection, L-histidine was imprinted directly into silica sol-gel films that consisted of a hybrid mixture of functionalized organosilicon precursors (phenyltrimethoxysilane and methyltrimethoxysolane). The viscoelasticity of the film in the air and in buffer solution has been studied by the piezoelectric quartz crystal impedance technique. The binding of L-histidine to the imprinted film in the liquid phase was investigated by the piezoelectric microgravimetry and electrochemical impedance technique. Scatchard analysis showed that the maximum binding site (Qmax) of the L-histidine imprinted sol-gel film is about 23.7 micromol/g. A linear range from 5.0x10(-8) to 1.0x10(-4) M for a detection of L-histidine has been observed with a detection limit of 2.5x10(-8) M for S/N=3. The proposed imprinted sol-gel sensor exhibits good stability, high specificity, and excellent stereoselectivity.  相似文献   

7.
Molecularly imprinted polymers (MIPs) were grafted on iniferter-modified carbon nanotube (CNT). Tween 20 was first immobilized on CNT by hydrophobic interactions. The hydroxyl-functionalized CNT was modified by silanisation with 3-chloropropyl trimethoxysilane. The iniferter groups were then introduced by reacting the CNT-bound chloropropyl groups with sodium N,N-diethyldithiocarbamate. UV light-initiated copolymerization of ethylene glycol dimethacrylate (crosslinking agent) and methacrylic acid (functional monomer) resulted in grafting of MIP on CNT for theophylline as a model template. MIPs grafted on CNT were characterized with elemental analysis, scanning electron microscopy, and thermogravimetric analysis. The theophylline-imprinted polymer on CNT showed higher binding capacity for theophylline than non-imprinted polymer on CNT and selectivity for theophylline over caffeine and theobromine (similar structure molecules). The data of theophylline and caffeine binding into the theophylline-imprinted polymer correlated well with the Scatchard plot. These MIPs on CNT can potentially be applied to probe materials in biosensor system based on CNT field effect transistor.  相似文献   

8.
This paper describes design of a new cartridge for selective solid phase extraction (SPE) using molecularly imprinted polymers (MIPs). The apparatus which is termed solvent extraction-MISPE (SE-MISPE) cartridge, consisted of a modified conventional micro test tube and has been developed to perform simultaneous forward-extraction of analyte from aqueous sample solution to an organic phase and back-extraction to MIP solid phase. In order to evaluate the performance of the proposed method, extraction of theophylline (THP) from human serum sample was investigated. An appropriate amount of THP-imprinted polymer was placed in the bottom of the micro tube and an organic solvent pipetted onto it and left to swell the polymer completely. A polyethylene frit to secure MIP particles was positioned by two Teflon rings such that it was fixed below the level of the organic layer. Then, aqueous sample solution containing THP was layered over the organic phase and the lid was closed. After completion of extraction, the organic and aqueous phases were removed and the adsorbed analyte was desorbed using a polar organic solvent. In order to reach the highest recovery, the experimental parameters such as the type of organic solvent, pH and ionic strength of aqueous phase, organic to aqueous volume ratio, time of extraction, type and amount of desorbent solvent were optimized. Under the experimental conditions, a plot of HPLC peak areas vs. initial concentrations of THP in the concentration interval of 0.5–30 μg ml−1 showed a good linearity (r = 0.9974). The limit of detection (LOD) and limit of quantification (LOQ) based on three and ten times of the noise of HPLC profile were 0.09 and 0.3 μg ml−1, respectively. The relative standard deviation (RSD) of the proposed method for the extraction and determination of 5 μg THP from 200 μl standard sample solution for 3 replicate measurements was 3.5%. The results showed that by means of the proposed cartridge, THP could significantly separate from the other structurally related compounds such as theobromine (THB) and caffeine (CAF). The added THP could be quantitatively recovered (79–83%) from the serum samples by the proposed procedure, being thus a guarantee of the accuracy of the SE-MISPE procedure. In addition, the loss of capability of the SE-MISPE cartridge was not considerably observed after 10 times loading and elution cycles.  相似文献   

9.
A novel method based on the molecularly imprinted solid-phase extraction (MISPE) procedure has been developed for the simultaneous determination of concentrations of sulfonylurea herbicides such as chlorsulfuron (CS), monosulfuron (MNS), and thifensulfuron methyl (TFM) in maize samples by liquid chromatography–tandem quadrupole mass spectrometry (LC–MS/MS). The molecularly imprinted polymer (MIP) for sulfonylurea herbicides was synthesized by precipitation polymerization using chlorsulfuron as the template molecule, 2-(diethylamino)ethyl methacrylate (DEAMA) as the functional monomer, and trimethylolpropane trimethacrylate (TRIM) as the cross-linker. The selectivities of the chlorsulfuron template and its analogs on the molecularly imprinted polymer were evaluated by high-performance liquid chromatography (HPLC). The extraction and purification procedures for the solid-phase extraction (SPE) cartridge with a molecularly imprinted polymer as the adsorbent for the selected sulfonylurea herbicides were then established. A molecularly imprinted solid-phase extraction method followed by high-performance liquid chromatography–tandem mass spectrometry for the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl was also established. The mean recoveries of these compounds in maize were in the range 75–110% and the limits of detection (LOD) of chlorsulfuron, monosulfuron, and thifensulfuron methyl were 0.02, 0.75, and 1.45 μg kg−1, respectively. It was demonstrated that the MISPE–HPLC–MS/MS method could be applied to the determination of chlorsulfuron, monosulfuron, and thifensulfuron methyl in maize samples.  相似文献   

10.
Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.  相似文献   

11.
Molecularly imprinted polymers (MIPs) for the recognition of enalapril and lisinopril were prepared using 4-vinylpyridine as the functional monomer. Following thermal polymerisation the resulting materials were crushed, ground and sieved. First generation MIPs were produced in protic polar porogenic solvents (mixture of methanol (MeOH) and acetonitrile (ACN)). These MIPs were used and validated as sorbents for solid phase extraction and binding assays. Second generation MIPs were produced with polar aprotic porogenic solvent (DMSO). These polymers were packed in HPLC columns in order to investigate their molecular recognition properties in a dynamic mode. The study of the mobile phase composition included two major parameters: organic modifier content and pH value. Retention factors illustrate selective binding of the template from the imprinted polymers, compared to structurally related compounds.  相似文献   

12.
Molecular dynamics simulations and computational screening were used to identify functional monomers capable of interacting with rhodamine B (RhB). A library of 24 kinds of common functional monomers for preparing molecular imprinted polymer (MIP) was built and their interactions with RhB in acetonitrile were calculated using the molecular dynamics software (Gromacs 3.3). It was anticipated that the monomers giving the highest binding energy are suitable for preparing the affinity polymers. According to the theoretical calculation results, the MIP microspheres with RhB as template was prepared by reverse microemulsion polymerization method using acrylamide (AAm) as functional monomer and divinylbenzene as cross-linker in acetonitrile. Microspheres have been characterized by scanning electron microscopy (SEM). The proper adsorption and selective recognition ability of the MIP were studied by an equilibrium-adsorption method. The MIP showed outstanding affinity towards RhB in aqueous solution and the optimum pH value for binding has been found around neutral range. The molecular recognition of RhB was analyzed in detail by using molecular modeling software (Gaussian03). In addition, the MIP reusability without obviously deterioration in performance was demonstrated at least five repeated cycles.  相似文献   

13.
A survey of commercially available amine-based monomers for binding and selectivity of carboxylate and phosphonic acid templates has revealed that the best selectivity is found for the pyridine-based monomers, while the highest affinity was found for 2-(dimethylamino)ethyl methacrylate (2-DEMA, 1). In fact, a more general finding is that selectivity is higher for aromatic amine-based monomers even though affinity remains higher for aliphatic amine-based monomers. An attempt to combine the optimal properties of these two classes of amine monomers, i.e. 2-vinylpyridine (2-VPY, 2), and 2-DEMA by using both simultaneously in a single imprinted polymer resulted in an MIP whose properties were dominated by the aliphatic amine-based monomer 2-DEMA. A controversy between the two commercially available vinylpyridine monomers, 2-VPY and 4-vinylpyridine (4-VPY, 3), was investigated, revealing that neither monomer is generally better for molecular imprinting; rather, the choice of 2-VPY or 4-VPY is template specific (although the preponderance of data tends to frequently favor 4-VPY). Phosphonic acid templates proved to be less successful as templates for molecular imprinting versus carboxylate functionalized templates, although binding was obtained and shown to be controllable via an ion-exchange process.  相似文献   

14.
15.
The use of molecularly imprinted polymers (MIPs) as sorbents for the solid phase extraction (SPE) of a pharmaceutical compound in development, prior to quantitative analysis was investigated. Three MIPs were synthesised using a structural analogue as the template molecule. Each polymer was prepared with different monomers and porogens. The MIPs were then tested for their performance both in organic and aqueous environments, the final aim being to load plasma directly onto the polymers. At an early development stage, there is a limited amount of compound available. Due to this limitation, reducing the amount of template required for imprinting was investigated. A MIP capable of extracting the analyte directly from plasma was produced. The specificity of the polymer allowed the method to be validated at a lower sensitivity than a more conventional SPE assay. For the first time, MIPs were packed into 96-well blocks enabling high throughput analysis. The analytical method was fully validated for imprecision and inaccuracy down to 4 ng/ml in plasma.  相似文献   

16.
A molecularly imprinted polymers (MIPs) microsensor was presented as a carbon fiber microelectrode (CFME) coating for specifically recognizing xanthine (Xan). The polymeric film was obtained based on the imprinted procedure of electropolymerization of pyrrole in the presence of the template molecule Xan by cyclic voltammetry, and template was removed by magnetic stirring. Under the optimum conditions, a satisfactory molecularly binding selectivity of Xan was obtained from the MIPs microsensor with an imprinting factor (IF) of 6.63 and a linear response to concentration in certain ranges. The ranges are from 4.0 × 10−6 to 6.0 × 10−5 M and from 8.0 × 10−5 to 2.0 × 10−3 M with a detection limit of 2.5 × 10−7 M. Meanwhile, good stability (relative standard deviation [RSD] = 3.2%, n = 10) and reproducibility (RSD = 2.0%, n = 10) were observed, and recoveries ranging from 96.9 to 102.5% were calculated when applied to Xan determination in real blood serum samples.  相似文献   

17.
The influence of sampling variables on the concentration of the dopamine metabolites 3-methoxytyramine (3MT), dihydroxyphenylacetic acid (DOPAC) and homovanilic acid (HVA) was examined in equine urine. A logarithmic transformation of the data for all horses gave distribution which approximated the normal distributions for each metabolite. The mean urinary concentration of 3 MT in horses was 214 ng/mL and the application of a threshold with a probability of 1 in 10,000 gave an actionable level of 4 microg/mL. Environmental variables were not forensically significant in determining the population distribution. HVA was not found to be a reliable indicator of dopamine or levodopa administration.  相似文献   

18.
Molecularly imprinted polymers (MIPs) are polymers that can be tailored with affinity and selectivity for a molecule of interest. Offsetting the low cost and ease of preparation of MIPs is the presence of binding sites that vary widely in affinity and selectivity. Presented is a review of methods that take into account binding site heterogeneity when calculating the binding properties of MIPs. These include the bi-Langmuir, Freundlich, and Langmuir-Freundlich binding models. These methods yield a measure of heterogeneity in the form of binding site affinity distributions and the heterogeneity index. Recent developments have made these methods surprisingly easy to use while also yielding more accurate measures of the binding properties of MIPs. These have allowed for easier comparison and optimization of MIPs. Heterogeneous binding models have also led to a better understanding of the imprinting process and of the advantages and limitations of MIPs in chromatographic and sensor applications.  相似文献   

19.
Uniformly sized molecularly imprinted polymers (MIPs) for d-chlorpheniramine (CP) and -brompheniramine (BP) have been prepared by a multi-step swelling and polymerization method using methacrylic acid (MAA) or 2-(trifluoromethyl)acrylic acid (TFMAA) and ethylene glycol dimethacrylate (EDMA) as a functional monomer and cross-linker, respectively. The retentive and enantioselective properties of CP, BP and their structurally related compounds on the MIPs were evaluated using hydro-organic mobile phases. CP and BP enantiomers were retained the most as a monovalent cation on MAA-co-EDMA polymers and a divalent cation on TFMAA-co-EDMA polymers. Ion exchange and hydrophobic interactions could mainly work for the retention and enantioseparation of CP and BP on both MAA-co-EDMA and TFMAA-co-EDMA polymers in hydro-organic mobile phases. Though the respective MIPs gave the highest enantioselectivity for the template molecule, cross-reactivity for CP and BP was observed with them.  相似文献   

20.
Sol-gel imprinted materials were prepared against nafcillin, a semisynthetic beta-lactamic antibiotic employed in the treatment of serious infections caused by penicillinase-producing staphylococci. Two approaches were addressed for preparation of the imprinted materials and the controls: as conventional monoliths, which were ground and sieved to a desired particle size for rebinding analysis, and as films on supporting glass slides. The specific binding sites that are created during the imprinting process are analyzed via selective room temperature phosphorescence (RTP) (sol-gel films) measurements as well as via competitive room temperature phosphorescence ligand assay. Results demonstrated the importance of the physical configuration of the imprinted material for minimizing non-specific binding. The close similarities between the structures of different beta-lactamic antibiotics made it possible to interpret the roles of the template structure on specific molecular recognition. In this article, we introduce the use of room temperature phosphorescence as selective transduction method for the template. The imprinted sol-gel films displayed enhanced specific binding characteristics respect to the monolithic sol-gel and can be envisaged for the use as recognition matrices for the screening and rapid selection of antibiotics from a combinatorial library or for the rapid control of nafcillin in biological samples (e.g. milk, serum, urine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号