首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study investigated the expression and activation of Akt/PKB in developing and adult rat uterus. Expression of Akt was observed in uteri from adult ovariectomized and 7–35-day-old rats and no changes were observed in response to in vivo estradiol treatment (1–100 μg/100 g b.w.). To examine the mechanisms of PKB/Akt activation, phosphorylation at Thr308 and Ser473 regulatory sites were studied in uteri. Akt was constitutively phosphorylated on Ser473 residue in the untreated, control uteri, while phosphorylation of Thr308 was observed only after estradiol 17β (E2) treatment. The effects of E2 treatment were age dependent, no response was induced in 11-day-old uteri, while in 28 days and older rats the activation of Akt at both regulatory sites, Ser473 and Thr308, increased, the first response was detected 2 h after treatment, reaching the highest rate at 6 h. The rate of phosphorylation was stronger at Ser473 residue. The results suggest that the regulation of Akt activation at two regulatory sites in rat uteri are different, phosphorylation of Thr308 seems to be entirely estrogen dependent, while the phosphorylation of Ser473 is regulated by other factors as well as estrogen.  相似文献   

2.
In a previous work, we described a differential desensitization of the human δ-opioid receptor (hDOP-R) by etorphine (a non-selective and alkaloid agonist) and δ-selective and peptidic agonists (DPDPE ([d-Pen2,5]enkephalin) and deltorphin I (Tyr-d-Ala-Phe-Asp-Val-Val-Gly-NH2)) in the neuroblastoma cell line SK-N-BE (Allouche et al., Eur. J. Pharmacol., 371, 235, 1999). In the present study, we explored the putative role of different kinases in this differential regulation.

First, selective chemical inhibitors of PKA, PKC and tyrosine kinases were used and we showed a significant reduction of etorphine-induced opioid receptor desensitization by the bisindolylmaleimide I (PKC inhibitor) while genistein (tyrosine kinase inhibitor) was potent to impair desensitization induced by the different agonists. When the PKA was inhibited by H89 pretreatment, no modification of opioid receptor desensitization was observed whatever the agonist used.

Second, we further studied the role of G protein-coupled receptor kinases (GRKs) and by using western-blot experiments we observed that only the GRK2 isoform was expressed in the SK-N-BE cells. Next, the neuroblastoma cells were transfected with the wild type GRK2 or its dominant negative mutant GRK2-K220R and the inhibition on cAMP level was determined in naïve and agonist-pretreated cells. We showed that over-expression of GRK2-K220R totally abolished etorphine-induced receptor desensitization while no effect was observed with peptidic agonists and over-expression of GRK2 selectively impaired cAMP inhibition promoted by etorphine suggesting that this kinase was involved in the regulation of hDOP-R activated only by etorphine.

Third, correlation between functional experiments and phosphorylation of the hDOP-R after agonist activation was assessed by western-blot using the specific anti-phospho-DOP-R Ser363 antibody. While all agonists were potent to increase phosphorylation of opioid receptor, we showed no impairment of receptor phosphorylation level after PKC inhibitor pretreatment. Upon agonist activation, no enhancement of receptor phosphorylation was observed when the GRK2 was over-expressed while the GRK2-K220R partially reduced the hDOP-R Ser363 phosphorylation only after peptidic agonists pretreatment.

In conclusion, hDOP-R desensitization upon etorphine exposure relies on the GRK2, PKC and tyrosine kinases while DPDPE and deltorphin I mediate desensitization at least via tyrosine kinases. Although the Ser363 was described as the primary phosphorylation site of the mouse DOP-R, we observed no correlation between desensitization and phosphorylation of this amino acid.  相似文献   


3.
We demonstrate here that neuronal nitric-oxide synthase (nNOS) is phosphorylated and inhibited by a constitutively active form of Ca2+/calmodulin (CaM)-dependent protein kinase I (CaM-K I1-293). Substitution of Ser741 to Ala in nNOS blocked the phosphorylation and the inhibitory effect. Mimicking phosphorylation at Ser741 by Ser to Asp mutation resulted in decreased binding of and activation by CaM, since the mutation was within the CaM-binding domain. CaM-K I1-293 gave phosphorylation of nNOS at Ser741 in transfected cells, resulting in 60–70% inhibition of nNOS activity. Wild-type CaM-K I also did phosphorylate nNOS at Ser741 in transfected cells, but either CaM-K II or CaM-K IV did not. These results raise the possibility of a novel cross-talk between nNOS and CaM-K I through the phosphorylation of Ser741 on nNOS.  相似文献   

4.
SET, the translocation breakpoint-encoded protein in acute undifferentiated leukemia (AUL), is identified as a 39-kDa phosphoprotein found predominantly in the cell nuclei [1994, J. Biol. Chem. 269,2258-2262]. SET is fused to a putative oncoprotein, CAN, in AUL and is thought to regulate the transformation potential of SET-CAN by its nuclear localization and phosphorylation. We investigated in detail the in vivo phosphorylation of SET. Phosphorylation of SET occurred in all human cell lines examined in vivo, primarily on serine residues. Endoproteinase Glu-C digestion of phosphorylated SET yielded two phosphopeptides. By radiosequencing, we identified the in vivo phosphorylation sites of SET as Ser9 and Ser24. The surrounding sequences of Ser9 and Ser24 contained an apparent consensus site sequence for protein kinase C.  相似文献   

5.
After stimulation with agonist, G protein coupled receptors (GPCR) undergo conformational changes that allow activation of G proteins to transduce the signal, followed by phosphorylation by kinases and arrestin binding to promote receptor internalization. Actual paradigm, based on a study of GPCR-A/rhodopsin family, suggests that a network of interactions between conserved residues located in transmembrane (TM) domains (mainly TM3, TM6 and TM7) is involved in the molecular switch leading to GPCR activation.

We evaluated in CHO cells expressing the VPAC1 receptor the role of the third transmembrane helix in agonist signalling by point mutation into Ala of the residues highly conserved in the secretin-family of receptors: Y224, N229, F230, W232, E236, G237, Y239, L240. N229A VPAC1 mutant was characterized by a decrease in both potency and efficacy of VIP stimulated adenylate cyclase activity, by the absence of agonist stimulated [Ca2+]i increase, by a preserved receptor recognition of agonists and antagonist and by a preserved sensitivity to GTP suggesting the importance of that residue for efficient G protein activation. N229D mutant was not expressed at the membrane, and the N229Q with a conserved mutation was less affected than the A mutant. Agonist stimulated phosphorylation and internalization of N229A and N229Q VPAC1 were unaffected. However, the re-expression of internalized mutant receptors, but not that of the wild type receptor, was rapidly reversed after VIP washing. Receptor phosphorylation, internalization and re-expression may be thus dissociated from G protein activation and linked to another active conformation that may influence its trafficking.

Mutation of that conserved amino acid in VPAC2 could be investigated only by a conservative mutation (N216Q) and led to a receptor with a low VIP stimulation of adenylate cyclase, receptor phosphorylation and internalization. This indicated the importance of the conserved N residue in the TM3 of that family of receptors.  相似文献   


6.
7.
Reversible phosphorylation modulates a cells’ susceptibility to apoptosis. The phosphorylation status of BAD, a member of the Bcl-2 protein family, is an important checkpoint governing life-or-death decisions: Phosphorylation of serine residues 112, 136 and 155 on BAD prevents apoptosis. Here we report that BAD is a substrate for PP2C. Ser155 is involved in heterodimerization with Bcl-XL. We could demonstrate that PP1, PP2A and PP2C act on this site in vitro. However, only PP2C gives priority to P-Ser155 compared to P-Ser112 and P-Ser136 on BAD. The results indicate that PP2C is an additional factor triggering the pro-apoptotic function of BAD.  相似文献   

8.
9.
Abstract: The effects of depolarization by elevated potassium concentrations were studied in PC12 cells and in stably transfected AtT-20 cells expressing wild-type or [Leu19]-recombinant tyrosine hydroxylase (rTH). Changes in the phosphorylation states of Ser19 and Ser40 in tyrosine hydroxylase (TH) were determined immunochemically using antibodies specific for the phosphorylated state of each site and compared with changes in TH activity in PC12 cell lysates and with changes in l -DOPA biosynthesis rates in intact AtT-20 cells. Treatment of either PC12 cells or AtT-20 cells expressing wild-type rTH with elevated potassium produced a transient increase in the phosphorylation state of Ser19 (up to 0.7 mol of phosphate/mol of subunit) in concert with a more gradual and sustained increase in Ser40 phosphorylation. Elevated potassium treatment also increased TH activity in PC12 cell lysates, but these increases paralleled the temporal course of Ser40, as opposed to Ser19, phosphorylation. Similarly, increases in DOPA accumulation produced by elevated potassium in AtT-20 cells expressing wild-type rTH paralleled the increases in the phosphorylation state of Ser40 but not Ser19. Moreover, elevated potassium produced comparable increases in DOPA accumulation in AtT-20 cells expressing rTH in which Ser19 phosphorylation had been eliminated (by substitution of Leu for Ser19). Thus, depolarization-induced increases in the stoichiometry of Ser19 phosphorylation do not appear to influence directly the activity of TH in situ.  相似文献   

10.
Continuous exposure of cells to neurotransmitter or hormone agonists often results in a rapid desensitization of the cellular response. For example, pretreatment of Chinese hamster fibroblasts (CHW cells) expressing beta 2-adrenergic receptors (beta 2AR) with low (nanomolar) concentrations of isoproterenol, a beta-adrenergic agonist, causes decreases in the sensitivity of the cellular adenylyl cyclase response to the agonist, without changing the maximal responsiveness. In contrast, exposure of CHW cells to high (micromolar) concentrations of isoproterenol results in decreases in both sensitivity and the maximal responsiveness to agonist. To explore the role(s) of receptor phosphorylation in these processes, we expressed in CHW cells three mutant beta 2AR genes encoding receptors lacking putative phosphorylation sites for the cAMP-dependent protein kinase A and/or the cAMP-independent beta 2AR kinase. Using these mutants we found that exposure of cells to low concentrations of agonist appears to preferentially induce phosphorylation at protein kinase A sites. This phosphorylation correlates with the decreased sensitivity to agonist stimulation of the adenylyl cyclase response. At higher agonist concentrations phosphorylation on both the beta 2AR kinase and protein kinase A sites occurs, and only then is the maximal cyclase responsiveness elicited by agonist reduced. We conclude that low or high concentrations of agonist elicit phosphorylation of beta 2AR on distinct domains, with different implications for the functional coupling of the receptors with effector molecules.  相似文献   

11.
Abstract: In the absence of neurotrophic factors, chronic depolarization of plasma membrane has been shown to maintain several populations of primary neurons in culture. We report that in the PC12 cell line, depolarization causes Ca2+ influx through voltage-gated Ca2+ channels, which is able to stimulate extracellular-regulated kinase (ERK) activity. We studied which mediators were responsible for ERK activation resulting from increased levels of Ca2+ in the cytoplasm and found that calmodulin was involved in this process. The addition of W13, a calmodulin inhibitor, to the culture medium, prevented ERK activation when PC12 cells were depolarized. In addition, we show that high K+ treatment did not induce Trk A phosphorylation, thus excluding the possibility of Ca2+ operating through this receptor to activate the ERK signal transduction pathway. Moreover, although high K+ treatment is able to phosphorylate the epidermal growth factor receptor (EGFR) and thus to activate the ERK signal transduction pathway, we demonstrate that W13 did not alter the state of EGFR phosphorylation in conditions that almost completely blocked ERK activation. These data suggest that calmodulin mediates ERK activation induced by increases in intracellular Ca2+ concentration in PC12 cells by a mechanism that seems to be independent of Trk A and EGFR activation.  相似文献   

12.
Abstract: We expressed the cloned μ-opioid receptor (μR) in high abundance (5.5 × 106 sites/cell) with an amino-terminal epitope tag (EYMPME) in human embryonic kidney 293 cells. The epitope-tagged receptor (EE-μR) was similar to the untagged μR in ligand binding and agonist-dependent inhibition of cyclic AMP accumulation. By confocal microscopy, the labeled receptor was shown to be largely confined to the plasma membrane. Pretreatment with morphine failed to affect the cellular distribution of the receptor as judged by immunofluorescence and tracer binding studies. In contrast, exposure to the μ-specific peptide agonist [ d -Ala2,MePhe4,Glyol5]enkephalin (DAMGO) caused strong labeling of endocytic vesicles, indicating extensive agonist-induced cellular redistribution of EE-μR. Tracer binding studies suggested partial net internalization and a small degree of down-regulation caused by DAMGO. EE-μR-containing membranes were solubilized in detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate] and immunoprecipitated by an anti-epitope monoclonal antibody. Immunoblotting revealed a prominent band at ∼70 kDa with weaker bands at ∼65 kDa. EE-μR was labeled with [γ-32P]ATP in permeabilized cells, immunoprecipitated, and analyzed by polyacrylamide gel electrophoresis autoradiography. A prominent band at 65–70 kDa indicated the presence of basal receptor phosphorylation occurring in the absence of agonist, which was enhanced ∼1.8-fold with the addition of morphine. In conclusion, intracellular trafficking of the μR appears to depend on the agonist, with morphine and DAMGO having markedly different effects. Unlike other G protein-coupled receptors, basal phosphorylation is substantial, even in the absence of agonist.  相似文献   

13.
14.
Abstract: The effects of extracellular calcium on functional properties of nicotinic receptors from mouse thalamus were investigated. Previous studies have reported that calcium modulates the function of several neuronal nicotinic receptors. A 86Rb+ ion efflux assay was developed to measure nicotinic receptor function from brain tissue, and data indicate that α4β2 receptors may mediate this response. Using the 86Rb+ efflux assay, calcium effects on receptor activation, desensitization induced by high, activating and low, subactivating concentrations of agonist, and recovery from desensitization were examined. Effects of calcium on the kinetics of ligand binding were also investigated. Calcium modulated receptor activation by increasing the maximal response to nicotine in a concentration-dependent manner, without affecting the EC50 of nicotine. Barium, but not magnesium, mimicked the effects of calcium on receptor activation. The increase in receptor activation could not be explained by changes in the ratio of activatable to desensitized receptors as assessed by the kinetics of ligand binding. Desensitization following activation was unaffected by calcium. Calcium, barium, and magnesium, however, increased the potency of nicotine for desensitization induced by exposure to low, subactivating concentrations of nicotine. Recovery from desensitization was not modulated by calcium. These data suggest that calcium modulates various functional aspects of nicotinic receptors from mouse brain and may do so via different mechanisms.  相似文献   

15.
16.
Matrix metalloproteinase-13 (MMP-13) plays a critical role in parathyroid hormone (PTH)-induced bone resorption. PTH acts via protein kinase A (PKA) to phosphorylate and stimulate the transactivation of Runx2 for MMP-13 promoter activation. We show here that PTH stimulated Runx2 phosphorylation in rat osteoblastic cells. Runx2 was phosphorylated on serine 28 and threonine 340 after 8-bromo cyclic adenosine mono phosphate (8-Br-cAMP) treatment. We further demonstrate that in the presence of 8-Br-cAMP, the wild-type Runx2 construct stimulated MMP-13 promoter activity, while the Runx2 construct having mutations at three phosphorylation sites (S28, S347 and T340) was unable to stimulate MMP-13 promoter activity. Thus, we have identified the Runx2 phosphorylation sites necessary for PKA stimulated MMP-13 promoter activation and this event may be critical for bone remodeling.  相似文献   

17.
18.
Signaling through focal adhesion kinase   总被引:48,自引:0,他引:48  
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.  相似文献   

19.
Abstract: In previous studies we have identified Ser502, Ser528, and Ser534 as target sites in chicken neurofilament middle molecular mass protein (NF-M) for casein kinase I (CKI) in vitro and have shown that these sites are also phosphorylated in vivo. We now make use of a combination of molecular biological and protein chemical techniques to show that two additional in vivo phosphorylation sites in chicken NF-M, Ser464 and Ser471, can also be phosphorylated by CKI in vitro. These two sites are conserved in higher vertebrate NF-M molecules, and recombinant protein constructs containing the homologous rat NF-M peptides can be phosphorylated by CKI in vitro, suggesting that phosphorylation of these sites is conserved at least in higher vertebrates. The two new sites are adjacent to a conserved peptide sequence (VEE-IIEET-V) found once in higher vertebrate NF-M molecules and twice in lamprey NF-180. Variants of this sequence are also found in neurofilament low and high molecular mass proteins (NF-L and NF-H) and α-internexin, and in mammalian NF-L are known to be associated with in vivo phosphorylation sites. We speculate that CKI phosphorylation in general, and these sites in particular, may be important in neurofilament function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号