首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present here a general model for integrase family site-specific recombination using the geometric relationships of the cleavable phosphodiester bonds and the disposition of the recombinase monomers (defined by their binding planes) with respect to them. The 'oscillation model' is based largely on the conformations of the recombinase-bound DNA duplexes and their dynamics within Holliday junctions. The duplex substrate or the Holliday junction intermediate is capable of 'oscillating' between two cleavage-competent asymmetric states with respect to corres-ponding chemically inert 'equilibrium positions'. The model accommodates several features of the Flp system and predicts two modes of DNA cleavage during a normal recombination event. It is equally applicable to other systems that mediate recombination across 6, 7 or 8 bp long strand exchange regions (or spacers). The model is consistent with approximately 0-1, 1-2 and 2-3 bp of branch migration during recombination reactions involving 6, 7 and 8 bp spacers, respectively.  相似文献   

2.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3′-phosphotyrosine intermediates, and rearrange the free 5′ ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5′-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100?kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5′-phosphate and 3′-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

3.
The processes of DNA topoisomerization and site-specific recombination are fundamentally similar: DNA cleavage by forming a phospho-protein covalent linkage, DNA topological rearrangement, and DNA ligation coupled with protein regeneration. Type IB DNA topoisomerases are structurally and mechanistically homologous to tyrosine recombinases. Both enzymes nick DNA double helices independent of metal ions, form 3'-phosphotyrosine intermediates, and rearrange the free 5' ends relative to the uncut strands by swiveling. In contrast, serine recombinases generate 5'-phospho-serine intermediates. A 180° relative rotation of the two halves of a 100 kDa terameric serine recombinase and DNA complex has been proposed as the mechanism of strand exchange. Here I propose an alternative mechanism. Interestingly, the catalytic domain of serine recombinases has structural similarity to the TOPRIM domain, conserved among all Type IA and Type II topoisomerases and responsible for metal binding and DNA cleavage. TOPRIM topoisomerases also cleave DNA to generate 5'-phosphate and 3'-OH groups. Based on the existing biochemical data and crystal structures of topoisomerase II and serine recombinases bound to pre- and post-cleavage DNA, I suggest a strand passage mechanism for DNA recombination by serine recombinases. This mechanism is reminiscent of DNA topoisomerization and does not require subunit rotation.  相似文献   

4.
5.
In this study, we have used multiple strategies to characterize the mechanisms of the type I and type II RNA cleavage activities harbored by the Flp (pronounced here as "flip") site-specific DNA recombinase (Flp-RNase I and II, respectively). Reactions using half-sites pre-bound by step-arrest mutants of Flp agree with a "shared active site" being responsible for the type I reaction (as is the case with normal DNA recombination). In a "pre-cleaved" type I substrate containing a 3'-phosphotyrosyl bond, the Flp-RNase I activity can be elicited by either wild type Flp or by Flp(Y343F). Kinetic analyses of the type I reaction are consistent with the above observations and support the notion that the DNA recombinase and type I RNase active sites are identical. The type II RNase activity is expressed by Flp(Y343F) in a half-site substrate and is unaffected by the catalytic constitution of a Flp monomer present on a partner half-site. Reaction conditions that proscribe the assembly of a DNA bound Flp dimer have no effect on Flp-RNase II. These biochemical results, together with kinetic data, are consistent with the reaction being performed from a "non-shared active site" contained within a single Flp monomer. The Flp-related recombinase Cre, which utilizes a non-shared recombination active site, exhibits the type I RNA cleavage reaction. So far, we have failed to detect the type II RNase activity in Cre. Despite their differences in active site assembly, Cre functionally mimics Flp in being able to provide two functional active sites from a trimer of Cre bound to a three-armed (Y-shaped) substrate.  相似文献   

6.
The integrases are a diverse family of tyrosine recombinases which rearrange DNA duplexes by means of conservative site-specific recombination reactions. Members of this family, of which the well-studied lambda Int protein is the prototype, were previously found to share four strongly conserved residues, including an active site tyrosine directly involved in transesterification. However, few additional sequence similarities were found in the original group of 27 proteins. We have now identified a total of 81 members of the integrase family deposited in the databases. Alignment and comparisons of these sequences combined with an evolutionary analysis aided in identifying broader sequence similarities and clarifying the possible functions of these conserved residues. This analysis showed that members of the family aggregate into subfamilies which are consistent with their biological roles; these subfamilies have significant levels of sequence similarity beyond the four residues previously identified. It was also possible to map the location of conserved residues onto the available crystal structures; most of the conserved residues cluster in the predicted active site cleft. In addition, these results offer clues into an apparent discrepancy between the mechanisms of different subfamilies of integrases.  相似文献   

7.
Alignments of 105 site-specific recombinases belonging to the Int family of proteins identified extended areas of similarity and three types of structural differences. In addition to the previously recognized conservation of the tetrad R-H-R-Y, located in boxes I and II, several newly identified sequence patches include charged amino acids that are highly conserved and a specific pattern of buried residues contributing to the overall protein fold. With some notable exceptions, unconserved regions correspond to loops in the crystal structures of the catalytic domains of lambda Int (Int c170) and HP1 Int (HPC) and of the recombinases XerD and Cre. Two structured regions also harbor some pronounced differences. The first comprises beta-sheets 4 and 5, alpha-helix D and the adjacent loop connecting it to alpha-helix E: two Ints of phages infecting thermophilic bacteria are missing this region altogether; the crystal structures of HPC, XerD and Cre reveal a lack of beta-sheets 4 and 5; Cre displays two additional beta-sheets following alpha-helix D; five recombinases carry large insertions. The second involves the catalytic tyrosine and is seen in a comparison of the four crystal structures. The yeast recombinases can theoretically be fitted to the Int fold, but the overall differences, involving changes in spacing as well as in motif structure, are more substantial than seen in most other proteins. The phenotypes of mutations compiled from several proteins are correlated with the available structural information and structure-function relationships are discussed. In addition, a few prokaryotic and eukaryotic enzymes with partial homology with the Int family of recombinases may be distantly related, either through divergent or convergent evolution. These include a restriction enzyme and a subgroup of eukaryotic RNA helicases (D-E-A-D proteins).  相似文献   

8.
The FLP recombinase of the yeast 2 micron circle plasmid belongs to theInt family of recombinases. Only three amino acid residues are invariant among members of this family. Functional analyses of FLP protein variants mutated at these three residues suggest their involvement at specific steps of the recombination pathway. We propose that these residues play the same functional role in the mechanism of action of all theInt family recombinases.  相似文献   

9.
Site-specific recombination at the plasmid ColE1 cer site requires the Escherichia coli chromosomal gene xerC. The xerC gene has been localized to the 85-min region of the E. coli chromosome, between cya and uvrD. The nucleotide sequences of the xerC gene and flanking regions have been determined. The xerC gene encodes a protein with a calculated molecular mass of 33.8 kDa. This protein has substantial sequence similarity to the lambda integrase family of site-specific recombinases and is probably the cer recombinase. The xerC gene is expressed as part of a multicistronic unit that includes the dapF gene and two other open reading frames.  相似文献   

10.
Summary Shufflon is a novel type of DNA rearrangement in which four DNA segments are flanked by seven 19-bp repeat sequences. The site-specific recombination between any inverted repeats results in an inversion of the DNA segment(s) either independently or in groups. The recombination is mediated by a gene designated rci. We have determined the nucleotide sequence of the rci gene and found that it encodes a basic protein with 384 amino acid residues. The rci gene was fused with lacZ and its gene product was identified by Western blot analysis. The Rci protein shows regional homologies to the site-specific recombinases encoded by the bacteriophage genomes, including those of , 80, P22, P2, 186, P4 and P1.  相似文献   

11.
12.
Genomic manipulations using site-specific recombinases rely on their applied characteristics in living systems. To understand their applied properties so that they can be optimally deployed, we compared the recombinases FLP and Cre in two assays. In both Escherichia coli and in vitro, FLP shows a different temperature optimum than Cre. FLP is more thermolabile, having an optimum near 30 degrees C and little detectable activity above 39 degrees C. Cre is optimally efficient at 37 degrees C and above. Consistent with FLP thermolability, recombination in a mammalian cell line mediated by a ligand- regulated FLP-androgen receptor fusion protein is more efficient at 35 degrees C than at higher temperatures. We also document a mutation in a commercially available FLP plasmid (FLP-F70L) which renders this recombinase even more thermolabile. The different temperature optima of FLP, FLP-F70L and Cre influence their strategies of usage. Our results recommend the use of Cre for applications in mice that require efficient recombination. The thermolabilities of FLP and FLP-F70L can be usefully exploited for gain of function and cell culture applications.  相似文献   

13.
A B Burgin  Jr  B N Huizenga    H A Nash 《Nucleic acids research》1995,23(15):2973-2979
DNA topoisomerases and DNA site-specific recombinases are biologically important enzymes involved in a diverse set of cellular processes. We show that replacement of a phosphodiester linkage by a 5'-bridging phosphorothioate linkage creates an efficient suicide substrate for calf thymus topoisomerase I and lambda integrase protein (Int). Although the bridging phosphorothioate linkage is cleaved by these enzymes, the 5'-sulfhydryl which is generated is not competent for subsequent ligation reactions. We use the irreversibility of Int-promoted cleavage to explore conditions and factors that contribute to various steps of lambda integrative recombination. The phosphorothioate substrates offer advantages over conventional suicide substrates, may be potent tools for inhibition of the relevant cellular enzymes and represent a unique tool for the study of many other phosphoryl transfer reactions.  相似文献   

14.
The Flp recombinase of Saccharomyces cerevisae and the related R recombinase of Zygosaccharomyces rouxii can efficiently catalyze strand cleavage and strand exchange reactions in half recombination sites. A half-site consists of one recombinase binding element, a recombinase cleavage site on one strand and a 5' spacer hydroxyl group on the other that can initiate the strand exchange reaction. We have studied the various types of strand exchanges that half-sites can participate in. Reaction between a left half-site and a right half-site generates a full recombination site. Strand transfer between two left half-sites or between two right half-sites produces pseudo-full-sites. Strand transfer within a half-site results in a stem-loop or hairpin product. The half-site strand transfer reaction is fairly indifferent to the spacer sequence of the substrate per se and is less sensitive to variations in spacer lengths than a full-site recombination reaction. The optimal spacer length of eight to ten nucleotides observed for the Flp half-site reaction likely permits the most productive catalytic interactions between two Flp monomers bound to each of two partner half-sites. When reacted with a full-site, the half-site can give rise to a normal or reverse recombinant, corresponding to homologous or non-homologous alignments of the spacer sequences during substrate synapsis. The contrary recombination (resulting from non-homologous spacer alignment), whose level is low relative to normal recombination, is partly suppressed when the half-site spacer ends in a 5'-phosphate rather than a 5'-hydroxyl group. Thus, the early steps of recombination, namely synapsis and initial stand transfer, are not dependent on complete spacer homology between the two recombining substrates. The selection of properly aligned substrate partners must occur at the homology dependent branch migration step. In reactions containing a mixture of Flp and R half-sites, Flp and R catalyze strand transfer, almost exclusively, within or between their respective cognate substrates. However, under conditions where self-crosses are inhibited, strand exchange between a Flp half-site and an R half-site appears to be stimulated by a combination of R and Flp.  相似文献   

15.
In Xer site-specific recombination, two related recombinases, XerC and XerD, mediate the formation of recombinant products using Holliday junction-containing DNA molecules as reaction intermediates. Each recombinase catalyses the exchange of one pair of specific strands. By using synthetic Holliday junction-containing recombination substrates in which two of the four arms are tethered in an antiparallel configuration by a nine thymine oligonucleotide, we show that XerD catalyses efficient strand exchange only when its substrate strands are 'crossed'. XerC also catalyses very efficient strand exchange when its substrate strands are 'crossed', though it also appears to be able to mediate strand exchange when its substrate strands are 'continuous'. By using chemical probes of Holliday junction structure in the presence and absence of bound recombinases, we show that recombinase binding induces unstacking of the bases in the centre of the recombination site, indicating that the junction branch point is positioned there and is distorted as a consequence of recombinase binding.  相似文献   

16.
Studies of the site-specific recombinase Cre suggest a key role for interactions between the C-terminus of the protein and a region located about 30 residues from the C-terminus in linking in a cyclical manner the four recombinase monomers present in a recombination complex, and in controlling the catalytic activity of each monomer. By extrapolating the Cre DNA recombinase structure to the related site-specific recombinases XerC and XerD, it is predicted that the extreme C-termini of XerC and XerD interact with alpha-helix M in XerD and the equivalent region of XerC respectively. Consequently, XerC and XerD recombinases deleted for C-terminal residues, and mutated XerD proteins containing single amino acid substitutions in alphaM or in the C-terminal residues were analysed. Deletion of C-terminal residues of XerD has no measurable effect on co-operative interactions with XerC in DNA-binding assays to the recombination site dif, whereas deletion of 5 or 10 residues of XerC reduces co-operativity with XerD some 20-fold. Co-operative interactions between pairs of truncated proteins during dif DNA binding are reduced 20- to 30-fold. All of the XerD mutants, except one, were catalytically proficient in vitro; nevertheless, many failed to mediate a recombination reaction on supercoiled plasmid in vivo or in vitro, implying that the ability to form a productive recombination complex and/or mediate a controlled recombination reaction is impaired.  相似文献   

17.
Abstract The nucleotide sequence of a staphylococcal plasmid gene has been found to encode a protein highly homologous to the Hin family of conservative site-specific recombination proteins.  相似文献   

18.
Tyrosine site-specific recombinases (SSRs) represent a versatile genome editing tool with considerable therapeutic potential. Recent developments to engineer and evolve SSRs into heterotetramers to improve target site flexibility signified a critical step towards their broad utility in genome editing. However, SSR monomers can form combinations of different homo- and heterotetramers in cells, increasing their off-target potential. Here, we discover that two paired mutations targeting residues implicated in catalysis lead to simple obligate tyrosine SSR systems, where the presence of all distinct subunits to bind as a heterotetramer is obligatory for catalysis. Therefore, only when the paired mutations are applied as single mutations on each recombinase subunit, the engineered SSRs can efficiently recombine the intended target sequence, while the subunits carrying the point mutations expressed in isolation are inactive. We demonstrate the utility of the obligate SSR system to improve recombination specificity of a designer-recombinase for a therapeutic target in human cells. Furthermore, we show that the mutations render the naturally occurring SSRs, Cre and Vika, obligately heteromeric for catalytic proficiency, providing a straight-forward approach to improve their applied properties. These results facilitate the development of safe and effective therapeutic designer-recombinases and advance our mechanistic understanding of SSR catalysis.  相似文献   

19.
We have probed the association of Flp recombinase with its DNA target using protein footprinting assays. The results are consistent with the domain organization of the Flp protein and with the general features of the protein-DNA interactions revealed by the crystal structures of the recombination intermediates formed by Cre, the Flp-related recombinase. The similarity in the organization of the Flp and Cre target sites and in their recognition by the respective recombinases implies that the overall DNA-protein geometry during strand cleavage in the two systems must also be similar. Within the functional recombinase dimer, it is the interaction between two recombinase monomers bound on either side of the strand exchange region (or spacer) that provides the allosteric activation of a single active site. Whereas Cre utilizes the cleavage nucleophile (the active site tyrosine) in cis, Flp utilizes it in trans (one monomer donating the tyrosine to its partner). By using synthetic Cre and Flp DNA substrates that are geometrically restricted in similar ways, we have mapped the positioning of the active and inactive tyrosine residues during cis and trans cleavage events. We find that, for a fixed substrate geometry, Flp and Cre cleave the labile phosphodiester bond at the same spacer end, not at opposite ends. Our results provide a model that accommodates local heterogeneities in peptide orientations in the two systems while preserving the global functional architecture of the reaction complex.  相似文献   

20.
Site-specific recombination mediates the rearrangement of nucleic acids by the virtue of an recombinase acting on specific recognition sequences. Recombining activities belong either to the tyrosine- or serine-type group, based on the presence of specific residues in the catalytic centre, which can be further subdivided into families due to additional criteria. The most prominent systems are the λ phage integrase acting on att sites; the Cre recombinase from bacteriophage P1 with its loxP attachment sites; the FLP/FTR system of fungal origin, where it is required for 2-μm plasmid replication/amplification in yeast; and the prokaryotic β-recombinase that recombines six sites specifically in cis. Each of these has been exploited in fungal hosts of biotechnological, medical or general relevance, mainly for cloning projects, approaches of gene targeting, genome modification or screening purposes. With their precise and defined mode of action are site-specific recombination systems eminently suited for genetic tasks in fungi, like they are executed in functional studies at high throughput or modern approaches of synthetic biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号