首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined the influence of the V1/V2 region of the human immunodeficiency virus type 1 (HIV-1) gp120 on certain biologic properties of the virus. We observed that on the genomic background of the T-cell-line-tropic strain, HIV-1SF2mc, both the V1 and V2 domains of the macrophage-tropic strain, HIV-1SF162mc, in addition to the required V3 domain, are necessary to attain full macrophage tropism. Furthermore, the V2 domain modulates the sensitivity of HIV-1 to soluble CD4 neutralization. Structural studies of recombinant and mutant envelope glycoproteins suggest that the function of the V1/V2 region is to interact with the V3 domain and confer on the envelope gp120 of HIV-1SF2mc a conformation more similar to that of the macrophage-tropic strain HIV-1SF162mc. The conformation of the envelope gp120 appears to be strain specific and plays an important role in determining HIV-1 tissue tropism and sensitivity to soluble CD4 neutralization.  相似文献   

2.
Yang X  Kurteva S  Ren X  Lee S  Sodroski J 《Journal of virology》2005,79(19):12132-12147
The human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Envs) function as a trimer, mediating virus entry by promoting the fusion of the viral and target cell membranes. HIV-1 Env trimers induce membrane fusion through a pH-independent pathway driven by the interaction between an Env trimer and its cellular receptors, CD4 and CCR5/CXCR4. We studied viruses with mixed heterotrimers of wild-type and dominant-negative Envs to determine the number (T) of Env trimers required for HIV-1 entry. To our surprise, we found that a single Env trimer is capable of supporting HIV-1 entry; i.e., T = 1. A similar approach was applied to investigate the entry stoichiometry of envelope glycoproteins from amphotropic murine leukemia virus (A-MLV), avian sarcoma/leukosis virus type A (ASLV-A), and influenza A virus. When pseudotyped on HIV-1 virions, the A-MLV and ASLV-A Envs also exhibit a T = 1 entry stoichiometry. In contrast, eight to nine influenza A virus hemagglutinin trimers function cooperatively to achieve membrane fusion and virus entry, using a pH-dependent pathway. The different entry requirements for cooperativity among Env trimers for retroviruses and influenza A virus may influence viral strategies for replication and evasion of the immune system.  相似文献   

3.
To map the regions of the external envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) involved in the process of membrane fusion, we determined the syncytium-inducing capacity of a panel of transiently expressed chimeric envelope genes. This panel was generated by exchanging gene fragments between four previously studied envelope genes that exhibited a high degree of sequence homology yet displayed marked differences in syncytium-inducing capacity when expressed by recombinant vaccinia virus. The results demonstrate that multiple regions of the HIV-1 envelope glycoproteins are involved in syncytium formation. Some fragments, most notably those containing the V2 or V3 region, can transfer syncytium-inducing capacity to envelope proteins previously not capable of inducing syncytia. Moreover, it is shown that such regions functionally interact with other envelope regions, especially one encompassing the V4 and V5 regions of gp120 or a region encompassing part of gp41, to exert their function in membrane fusion.  相似文献   

4.
Various roles for the viral receptor, CD4, have been proposed in facilitating human immunodeficiency virus type 1 (HIV-1) entry, including virion binding to the target cell and the induction of conformational changes in the viral envelope glycoproteins required for the membrane fusion reaction. Here, we compare the structural requirements in the CDR2-like loop of CD4 domain 1, the major contact site of the gp120 envelope glycoprotein, for gp120 binding and virus entry. For every CD4 mutant examined, the level of cell surface expression and the gp120 binding affinity were sufficient to explain the relative ability to function as a viral receptor. The decrease in relative infectibility associated with decreased gp120 binding affinity was more pronounced at lower cell surface CD4 concentrations. These results imply that both receptor density and affinity determine the efficiency of HIV-1 entry and that specific structures in the CD4 residues examined are probably not required for HIV-1 entry functions other than gp120 binding.  相似文献   

5.
A human host offers a variety of microenvironments to the infecting human immunodeficiency virus type 1 (HIV-1), resulting in various selective pressures, most of them directed against the envelope (env) gene. Therefore, it seems evident that the replicative capacity of the virus is largely related to viral entry. In this study we have used growth competition experiments and TaqMan real-time PCR detection to measure the fitness of subtype B HIV-1 primary isolates and autologous env-recombinant viruses in order to analyze the contribution of wild-type env sequences to overall HIV-1 fitness. A significant correlation was observed between fitness values obtained for wild-type HIV-1 isolates and those for the corresponding env-recombinant viruses (r = 0.93; P = 0.002). Our results suggest that the env gene, which is linked to a myriad of viral characteristics (e.g., entry into the host cell, transmission, coreceptor usage, and tropism), plays a major role in fitness of wild-type HIV-1. In addition, this new recombinant assay may be useful for measuring the contribution of HIV-1 env to fitness in viruses resistant to novel antiretroviral entry inhibitors.  相似文献   

6.
It is well documented that removal of the V1V2 region or of the V2 loop alone from the envelope glycoprotein of human immunodeficiency virus type 1 (HIV-1) or simian immunodeficiency virus (SIV) increases the susceptibility of these viruses to neutralization by antibodies. The specific role of the V1 loop in defining the neutralization susceptibility of HIV is, however, not well documented. Our current studies indicate that although the V1V2 region is a global modulator of the HIV-1 neutralization susceptibility, the individual roles the V1 and V2 loops have in defining the neutralization susceptibility profile of HIV-1 differ and in some cases are opposite. While deletion of the V2 loop renders the virus more susceptible to neutralization by antibodies that recognize diverse epitopes, in particular certain ones located in the CD4 binding site and the V3 loop, deletion of the V1 loop renders the virus refractory to neutralization, especially by antibodies that recognize CD4-induced epitopes and certain CD4-site binding antibodies. Our current studies also indicate that the relative involvement of the V2 loop of the HIV-1 envelope during virus-cell entry appears to be envelope background dependent. As a result, although deletion of the V2 loop from the clade B, R5-tropic SF162 HIV-1 virus resulted in a virus that was replication competent, the same modification introduced on the background of two other R5-tropic isolates, SF128A (clade B) or SF170 (clade A), abrogated the ability of these envelopes to mediate virus-cell entry.  相似文献   

7.
CD4 is the primary receptor for human immunodeficiency virus (HIV). The binding site for the surface glycoprotein of HIV type 1 (HIV-1), gp120, has been mapped to the C'-C" region of domain 1 of CD4. Previously, we have shown that a mutant of rat CD4, in which this region was exchanged for that of human CD4, is able to mediate infection of human cells by HIV-1, suggesting that essential interactions between HIV and CD4 are confined to this region. Our observations appeared to conflict with mutagenesis and antibody studies which implicate regions of CD4 outside the gp120-binding site in postbinding events during viral entry. In order to resolve this issue, we have utilized a panel of anti-rat CD4 monoclonal antibodies in conjunction with the rat-human chimeric CD4 to distinguish sequence-specific from steric effects. We find that several antibodies to rat CD4 inhibit HIV infection in cells expressing the chimeric CD4 and that this is probably due to steric hinderance. In addition, we demonstrate that replacement of the rat CDR3-like region with its human homolog does not increase the affinity of the rat-human chimeric CD4 for gp120 or affect the exposure of gp41 following binding to CD4, providing further evidence that this region does not play a crucial role during entry of virus.  相似文献   

8.
Biologically functional clade C envelope (Env) glycoproteins from the chronically (donor) and newly (recipient) infected partners of four heterosexual transmission pairs in Zambia were cloned and characterized previously. In each case, the donor viral quasispecies contained Envs that were resistant to autologous neutralization by contemporaneous plasma, while the recipient Envs were sensitive to neutralizing antibodies in this donor plasma sample. The donor Envs also varied in length, glycosylation, and amino acid sequence of the V1V2 hypervariable domain of gp120, while the recipient Envs were much more homogeneous. To assess the contribution of V1V2 to the neutralization phenotype of the donor Envs, V1V2 domains from neutralization-sensitive recipient Envs were replaced with donor V1V2 domains, and the autologous neutralization sensitivities of the chimeric Envs were evaluated using a virus-pseudotyping assay. Long donor V1V2 domains regulated sensitivity to autologous neutralization, although the effect was dependent on the Env background. Short donor V1V2 domains did not confer neutralization resistance. Primary sequence differences in V2 were also found to influence neutralization sensitivity in one set of recipient Envs. The results demonstrate that expansion of the V1V2 domain is one pathway to escape from autologous neutralization in subtype C Envs. However, V1V2-independent mechanisms of resistance also exist, suggesting that escape is multifaceted in chronic subtype C infection.  相似文献   

9.
The human immunodeficiency virus type 1 envelope glycoprotein (Env) complex is the principal focus of neutralizing antibody-based vaccines. The functional Env complex is a trimer consisting of six individual subunits: three gp120 molecules and three gp41 molecules. The individual subunits have proven unsuccessful as vaccines presumably because they do not resemble the functional Env complex. Variable domains and carbohydrates shield vulnerable neutralization epitopes on the functional Env complex. The deletion of variable loops has been shown to improve gp120's immunogenicity; however, problems have been encountered when introducing such modifications in stabilized Env trimer constructs. To address these issues, we have created a set of V1/V2 and V3 loop deletion variants in the context of complete virus to allow optimization by forced virus evolution. Compensatory second-site substitutions included the addition and/or removal of specific carbohydrates, changes in the disulfide-bonded architecture of the V1/V2 stem, the replacement of hydrophobic residues by hydrophilic and charged residues, and changes in distal parts of gp120 and gp41. These viruses displayed increased sensitivity to neutralizing antibodies, demonstrating the improved exposure of conserved domains. The results show that we can select for functionally improved Env variants with loop deletions through forced virus evolution. Selected evolved Env variants were transferred to stabilized Env trimer constructs and were shown to improve trimer expression and secretion. Based on these findings, we can make recommendations on how to delete the V1/V2 domain from recombinant Env trimers for vaccine and X-ray crystallography studies. In general, virus evolution may provide a powerful tool to optimize Env vaccine antigens.  相似文献   

10.
11.
Using DNA heteroduplex tracking assays, we characterized human immunodeficiency virus type 1 env V4/V5 genetic populations in multiple blood plasma samples collected over an average of 7 months from 24 chronically infected human subjects. We observed complex and dynamic V4/V5 genetic populations in most subjects. Comparisons of V4/V5 and V1/V2 population changes over the course of the study showed that major shifts in genetic populations frequently occurred in one region but not the other, and these observations were independently confirmed in one subject by single-genome sequencing. These results suggest that the V1/V2 and V4/V5 regions of env often evolve independently during chronic infection.  相似文献   

12.
Host cell range, or tropism, combined with coreceptor usage defines viral phenotypes as macrophage tropic using CCR5 (M-R5), T-cell-line tropic using CXCR4 (T-X4), or dually lymphocyte and macrophage tropic using CXCR4 alone or in combination with CCR5 (D-X4 or D-R5X4). Although envelope gp120 V3 is necessary and sufficient for M-R5 and T-X4 phenotypes, the clarity of V3 as a dominant phenotypic determinant diminishes in the case of dualtropic viruses. We evaluated D-X4 phenotype, pathogenesis, and emergence of D-X4 viruses in vivo and mapped genetic determinants in gp120 that mediate use of CXCR4 on macrophages ex vivo. Viral quasispecies with D-X4 phenotypes were associated significantly with advanced CD4+-T-cell attrition and commingled with M-R5 or T-X4 viruses in postmortem thymic tissue and peripheral blood. A D-X4 phenotype required complex discontinuous genetic determinants in gp120, including charged and uncharged amino acids in V3, the V5 hypervariable domain, and novel V1/V2 regions distinct from prototypic M-R5 or T-X4 viruses. The D-X4 phenotype was associated with efficient use of CXCR4 and CD4 for fusion and entry but unrelated to levels of virion-associated gp120, indicating that gp120 conformation contributes to cell-specific tropism. The D-X4 phenotype describes a complex and heterogeneous class of envelopes that accumulate multiple amino acid changes along an evolutionary continuum. Unique gp120 determinants required for the use of CXCR4 on macrophages, in contrast to cells of lymphocytic lineage, can provide targets for development of novel strategies to block emergence of X4 quasispecies of human immunodeficiency virus type 1.  相似文献   

13.
The envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) function as a homotrimer of gp120/gp41 heterodimers to support virus entry. During the process of virus entry, an individual HIV-1 envelope glycoprotein trimer binds the cellular receptors CD4 and CCR5/CXCR4 and mediates the fusion of the viral and the target cellular membranes. By studying the function of heterotrimers between wild-type and nonfunctional mutant envelope glycoproteins, we found that two wild-type subunits within an envelope glycoprotein trimer are required to support virus entry. Complementation between HIV-1 envelope glycoprotein mutants defective in different functions to allow virus entry was not evident. These results assist our understanding of the mechanisms whereby the HIV-1 envelope glycoproteins mediate virus entry and membrane fusion and guide attempts to inhibit these processes.  相似文献   

14.
The high-affinity interaction between the envelope glycoprotein (gp120-gp41) of the human immunodeficiency virus type 1 and its receptor, CD4, is important for viral entry into cells and therapeutical approaches based on the soluble form of CD4 (sCD4). Using flow cytometry, we studied the kinetics of binding of sCD4 to gp120-gp41 expressed on the cell surface. sCD4 binding was dependent on sCD4 concentration and temperature and exhibited bimolecular reaction kinetics. Binding was very slow at low sCD4 concentrations (below 0.2 micrograms/ml) and low temperatures (below 13 degrees C) but increased sharply with increasing temperature. The rate constant for association at 37 degrees C (1.5 x 10(5) M-1 s-1) was 14-fold higher than at 4 degrees C, but the affinity of sCD4 to membrane-bound gp120-gp41 was not significantly affected. The activation energy at higher temperatures (28 to 37 degrees C) was less than at lower temperatures (4 to 13 degrees C). After long periods of incubation, we observed a decrease of surface-bound sCD4 and gp120, even at low temperatures, which was attributed to sCD4-induced shedding of gp120. The rate of gp120 shedding was much lower than the rate of sCD4 binding and was dependent on sCD4 concentration and temperature. The finding that sCD4 binding is slow, especially at low sCD4 concentrations, can be of critical importance for efficient blocking of viral infection by sCD4 and should be considered when designing new protocols in the therapy of AIDS patients.  相似文献   

15.
Expression of the human immunodeficiency virus type 1 (HIV-1) receptor CD4 on many nonhuman and some human cell lines is not sufficient to permit HIV-1 infection. We describe a human glioblastoma cell line (U373-MG) which remains resistant to HIV-1 despite the added expression of an authentic CD4 molecule. The block to HIV-1 infection of these cells is strain independent and appears to be at viral entry. Heterokaryons of CD4-expressing U373-MG (U373-CD4) cells fused to HeLa cells allow HIV-1 entry. A U373-CD4/HeLa hybrid clone allows efficient HIV-1 replication. These results suggest that HeLa cells express a factor(s) that can complement the viral entry defect of U373-CD4 cells and is necessary for efficient CD4-mediated HIV-1 infection.  相似文献   

16.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1), like other lentiviruses, can infect non-dividing cells. The lentiviruses are most likely to have evolved a nuclear import strategy to import HIV-1 cDNA and viral protein complex through the nuclear pore complex (NPC) formed by nucleoporin proteins (Nup). In this study, we found that synthesis of integrated and 2LTR but not full-length form of HIV-1 cDNA was clearly impaired in culture via transduction of vesicular stomatitis virus matrix protein (VSV M), an inhibitor protein, through binding to the phenylalanine-glycine (FG) repeat region of Nup98. The impairment of synthesis of integrated and 2LTR DNA with VSV M was restored by ectopic overexpression of Nup98. A series of experiments using Nup98-depleted NPC by the small interfering RNA (siRNA) technique showed specific impairment of NPC structure and some functions, including nuclear import of HIV-1 cDNA. Our results suggest that Nup98 on the NPC specifically participates in the nuclear entry of HIV-1 cDNA following HIV-1 entry.  相似文献   

18.
19.
To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1alpha-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1alpha (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat-beta-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1beta (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1alpha. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1alpha, MIP-1beta, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors.  相似文献   

20.
Whereas human immunodeficiency virus (HIV) infects various cell types by fusion at the plasma membrane, we observed a different entry route in human primary macrophages, in which macropinocytosis is active. Shortly after exposure of macrophages to HIV-1 and irrespective of viral envelope-receptor interactions, particles were visible in intracellular vesicles, which were identified as macropinosomes. Most virions appeared subsequently degraded. However, fusion leading to capsid release in the cytosol and productive infection could take place inside vesicles when particles were properly enveloped. These observations provide new insights into HIV-1 interactions with a cell target relevant to pathogenesis. They may have implications for the design of soluble inhibitors aimed at interfering with the fusion or entry processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号