首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 992 毫秒
1.
Waterborne chemical cues are an important source of information for many aquatic organisms, in particular when assessing the current risk of predation. The ability to use chemical cues to detect and respond to potential predators before an actual encounter can improve prey chances of survival. We investigated predator recognition and the impact of chemical cues on predator avoidance in the freshwater isopod Asellus aquaticus. This isopod has recently colonised a novel habitat and diverged into two distinct ecotypes, which encounter different predator communities. Using laboratory-based choice experiments, we have quantified behavioural responses to chemical cues from predators typical of the two predator communities (larval dragonflies in the ancestral habitat, perch in the newly colonised habitat) in wild-caught and lab-reared Asellus of the two ecotypes. Individuals with prior experience of predators showed strong predator avoidance to cues from both predator types. Both ecotypes showed similar antipredator responses, but sexes differed in terms of threat-sensitive responses with males avoiding areas containing predator cues to a larger extent than females. Overall, chemical cues from fish elicited stronger predator avoidance than cues from larval dragonflies. Our results indicate that in these isopods, prior exposure to predators is needed to develop antipredator behaviour based on waterborne cues. Furthermore, the results emphasise the need to analyse predator avoidance in relation to waterborne cues in a sex-specific context, because of potential differences between males and females in terms of vulnerability and life history strategies.  相似文献   

2.
It is increasingly being recognized that predation can be a strong diversifying agent promoting ecological divergence. Adaptations against different predatory regimes can emerge over short periods of time and include many different traits. We studied antipredator adaptations in two ecotypes of an isopod (Asellus aquaticus) that have, diverged in parallel in two Swedish lakes over the last two decades. We quantified differences in escape speed, morphology and behavior for isopods from different ecotypes present in these lakes. Isopods from the source habitat (reed) coexist with mainly invertebrate predators. They are more stream-profiled and have higher escape speeds than isopods in the newly colonized stonewort habitat, which has higher density of fish predators. Stonewort isopods also show more cautious behaviors and had higher levels of phenotypic integration between coloration and morphological traits than the reed isopods. Colonization of a novel habitat with a different predation regime has thus strengthened the correlations between pigmentation and morphology and weakened escape performance. The strong signature of parallelism for these phenotypic traits indicates that divergence is likely to be adaptive and is likely to have been driven by differences in predatory regimes. Furthermore, our results indicate that physical performance, behavior and morphology can change rapidly and in concert as new habitats are colonized.  相似文献   

3.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

4.
Ecological factors can have profound effects on mating system and mating behaviour. We investigated the effect of altered ecological conditions, following colonization of a novel habitat, on precopulatory mate guarding in a freshwater isopod (Asellus aquaticus). This isopod occurs in two different ecotypes, which coexist within several different lakes in Sweden but which utilize different habitats. These ecotypes have rapidly (ca. 40 generations) diverged in parallel among lakes in several phenotypic characters, presumably as a response to different predatory pressures. Here, we demonstrate that also mate guarding characteristics have diverged in parallel between the ecotypes in different lakes. This is one of the few studies reporting parallel evolution of mating behaviour. Furthermore, our results also indicate a potential sexual conflict, as the length of mate guarding appears to lower components of female fitness. We discuss how novel environments might have strong and rapid effects on mate guarding dynamics and mating behaviour.  相似文献   

5.
The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus). A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively). In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype (“reed” isopods) and from the novel ecotype (“stonewort” isopods) population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence.  相似文献   

6.
The proximate and ultimate explanations for behavioural syndromes (correlated behaviours – a population trait) are poorly understood, and the evolution of behavioural types (configuration of behaviours – an individual trait) has been rarely studied. We investigated population divergence in behavioural syndromes and types using individually reared, completely predator‐ or conspecific‐naïve adult nine‐spined sticklebacks (Pungitius pungitius) from two marine and two predatory fish free, isolated pond populations. We found little evidence for the existence of behavioural syndromes, but population divergence in behavioural types was profound: individuals from ponds were quicker in feeding, bolder and more aggressive than individuals from marine environments. Our data reject the hypothesis that behavioural syndromes exist as a result of genetic correlations between behavioural traits, and support the contention that different behavioural types can be predominant in populations differing in predation pressure, most probably as a result of repeated independent evolution of separate behavioural traits.  相似文献   

7.
Identifying and examining traits that influence the distribution of species is crucial to the understanding of community structure. Theory predicts that traits should differ between species that live in temporary and permanent waters because of differing major environmental variables; viz drying out and predator presence, respectively. Species, however, will also be influenced by their evolutionary history, i.e. by the traits of their common ancestors. We studied differences in life history and behaviour traits in a series of laboratory experiments using pairs of dragonfly species out of three genera of Namibian Libellulidae (Odonata) with one species from each type of habitat. As predicted, growth rates were significantly higher in the temporary water species compared to the permanent water species. Activity and foraging, in contrast, differed between the genera, but did not differ between the habitat types. Hence, our study implies that the behavioural traits are influenced by phylogenetic inertia rather than by the habitat variables, while growth rate is adapted to the habitat. We argue that in all three genera one species has diverged recently from a sister species that lives in the original habitat of the genus, which may be temporary waters in Crocothemis Brauer and in Orthetrum Newman, and permanent waters in Trithemis Brauer. The behavioural traits may therefore be less well adapted. Rapid growth may be the more relevant trait because it is crucial to survival in temporary waters.  相似文献   

8.
Understanding how animal personality (consistent between‐individual behavioural differences) arises has become a central topic in behavioural sciences. This endeavour is complicated by the fact that not only the mean behaviour of individuals (behavioural type) but also the strength of their reaction to environmental change (behavioural plasticity) varies consistently. Personality and cognitive abilities are linked, and we suggest that behavioural plasticity could also be explained by differences in brain size (a proxy for cognitive abilities), since accurate decisions are likely essential to make behavioural plasticity beneficial. We test this idea in guppies (Poecilia reticulata), artificially selected for large and small brain size, which show clear cognitive differences between selection lines. To test whether those lines differed in behavioural plasticity, we reared them in groups in structurally enriched environments and then placed adults individually into empty tanks, where we presented them daily with visual predator cues and monitored their behaviour for 20 days with video‐aided motion tracking. We found that individuals differed consistently in activity and risk‐taking, as well as in behavioural plasticity. In activity, only the large‐brained lines demonstrated habituation (increased activity) to the new environment, whereas in risk‐taking, we found sensitization (decreased risk‐taking) in both brain size lines. We conclude that brain size, potentially via increasing cognitive abilities, may increase behavioural plasticity, which in turn can improve habituation to novel environments. However, the effects seem to be behaviour‐specific. Our results suggest that brain size likely explains some of the variation in behavioural plasticity found at the intraspecific level.  相似文献   

9.
Recent studies on parallel evolution have focused on the relative role of selection and historical contingency during adaptive divergence. Here, we study geographically separate and genetically independent lake populations of a freshwater isopod (Asellus aquaticus) in southern Sweden. In two of these lakes, a novel habitat was rapidly colonized by isopods from a source habitat. Rapid phenotypic changes in pigmentation, size and sexual behaviour have occurred, presumably in response to different predatory regimes. We partitioned the phenotypic variation arising from habitat ('selection': 81–94%), lake ('history': 0.1–6%) and lake × habitat interaction ('unique diversification': 0.4–13%) for several traits. There was a limited role for historical contingency but a strong signature of selection. We also found higher phenotypic variation in the source populations. Phenotype sorting during colonization and strong divergent selection might have contributed to these rapid changes. Consequently, phenotypic divergence was only weakly influenced by historical contingency.  相似文献   

10.
Individual life histories are strongly influenced by early environmental conditions and experiences. They shape morphology as well as behaviour and can promote adaptive divergence and phenotypic plasticity with regard to different habitat types. The fire salamander (Salamandra salamandra) in the Kottenforst forest in Bonn, Germany, exhibits two genetically distinct ecotypes occurring in two larval habitats, either ponds or streams. In this study, we investigated whether both ecotypes differ in risk-taking behaviour, measured as the behavioural response during a shelter-emergence test and a shelter-seeking test, and whether larval habitat type and size impact these behaviours. Our results revealed an influence of size as well as habitat type. Larger larvae of both habitats appear to be more risk-prone, as they spent more time outside the starting shelter in the shelter-emergence test. Irrespective of size, pond larvae sought shelter more often in the shelter-seeking test and are thus considered to be less risk-prone. These results indicate that larvae conform to a given niche by adjusting their behaviour. Future studies are needed to disentangle the role of genetic adaptation or phenotypic plasticity and to investigate long-term consequences of the larval habitat for the adult phenotype. Thereby, efforts should be made to create a concise set of multiple tests assessing behavioural patterns.  相似文献   

11.
Individual differences in behaviour, referred to as animal personality, are consistent across time and contexts. Nevertheless, personality traits show behavioural plasticity, much like many other phenotypic traits. In the present study, we examined the relationship between personality traits and behavioural plasticity in the common vole (Microtus arvalis) under stable, long-lasting laboratory conditions. A total of 94 voles were tested in the classic open field test, designed to measure seven behavioural parameters (distance moved, grooming, immobility, rearing, running, scanning and walking duration) during a three-minute test. A total of 60 voles formed the experimental group and were tested at four different time points over their lifetime (1st, 3rd, 5th and 7th month); 34 voles formed the control group and were tested only once at the 7th month. All voles were of the same age. Based on principal component analysis (PCA), two ordination axes were determined: “exploration” and “activity.” For further analyses, “distance moved” and “scanning duration” were selected from the first axis and “walking duration” from the second. Using linear mixed-effect models (LMMs), we found highly significant random intercepts (i.e. personality traits) in all three behavioural parameters. However, evidence for behavioural plasticity was only found in the distance moved parameter, as determined from the random slope, and correlations between personality trait (intercept) and plasticity (slope) were not significant for any trait. During the experiment, variances of random effects were high and remained essentially the same, whilst the rank order of many individuals changed. Based on fixed effect slopes and a comparison with the control group, habituation was only significant for “walking duration.” The observed low behavioural plasticity could mirror stable (laboratory) conditions that result in the manifestation of original trait settings (genetic, early postnatal) or their gradual overcoming. These findings provide a starting point for further tests on free-living voles.  相似文献   

12.
1. Behavioural differences among prey species may result from evolutionary adaptations that facilitate coexistence with different predators and influence vulnerability to predators. It has been hypothesised that prey species modify their behaviour in relation to the risk posed by particular predators. 2. We examined the relationship between anti‐predator behaviour and predation risk in five species of larval odonates in combination with three predatory fish species (perch, gudgeon and rudd) that differ in foraging behaviour. The odonates, Platycnemis pennipes, Coenagrion puella, Lestes sponsa, Sympetrum striolatum and Libellula depressa, differ with regard to their life cycle and habitat, including water depth, occurrence in temporary ponds and co‐existence with fish. 3. The odonate species differed in their response to fish: (i) Two species showed a flexible response. Larval C. puella reduced activity in the presence of fish, regardless of species, whereas L. depressa altered their activity only in the presence of gudgeon. (ii) Independent of fish species, all odonates except L. depressa exhibited spatial avoidance of fish. This was interpreted as a more general anti‐predator response. (iii) In some cases the odonates showed no response to predators and their behaviour was thus independent of predation risk. 4. Our results confirm that all odonates responded to the presence of at least some predatory fish, and that some odonate species discriminated between fish species. However, we found no significant correlation between behavioural modifications and predation risk, indicating that anti‐predator responses and predation risk depend on the particular predator and the species being preyed on.  相似文献   

13.
1. Behavioural adaptations to avoid and evade predators are common. Many studies have investigated population divergence in response to changes in predation regime within species, but studies exploring interspecific patterns are scant. Studies on interspecific divergence can infer common outcomes from evolutionary processes and highlight the role of environmental constraints in shaping species traits. 2. Species of the dragonfly genus Leucorrhinia underwent well‐studied shifts from habitats being dominated by predatory fish (fish lakes) to habitat being dominated by predatory invertebrates (dragonfly lakes). This change in top predators resulted in a set of adaptive trait modifications in response to the different hunting styles of both predator types: whereas predatory fish actively search and pursue prey, invertebrate predator follow a sit‐and‐wait strategy, not pursuing prey. 3. Here it is shown that the habitat shift‐related change in selection regime on larval Leucorrhinia caused species in dragonfly lakes to evolve increased larval foraging and activity, and results suggest that they lost the ability to recognise predatory fish. 4. The results of the present study highlight the impact of predators on behavioural trait diversification with habitat‐specific predation regimes selecting for distinct behavioural expression.  相似文献   

14.
Although changes in magnitude of single traits responding to selective agents have been studied intensively, little is known about selection shaping networks of traits and their patterns of covariation. However, this is central for our understanding of phenotypic evolution as traits are embedded in a multivariate environment with selection affecting a multitude of traits simultaneously rather than individually. Here, we investigate inter‐ and intraspecific patterns of trait integration (trait correlations) in the larval abdomen of dragonflies as a response to a change in predator selection. Species of the dragonfly genus Leucorrhinia underwent a larval habitat shift from predatory fish to predatory dragonfly‐dominated lakes with an associated relaxation in selection pressure from fish predation. Our results indicate that the habitat‐shift‐induced relaxed selection pressure caused phenotypic integration of abdominal traits to be reduced. Intraspecific findings matched patterns comparing species from both habitats with higher abdominal integration in response to predatory fish. This higher integration is probably a result of faster burst swimming speed. The abdomen holds the necessary morphological machinery to successfully evade predatory fish via burst swimming. Hence, abdominal traits have to function in a tight coordinated manner, as maladaptive variation and consequently nonoptimal burst swimming would cause increased mortality. In predatory dragonfly‐dominated lakes, no such strong link between burst swimming and mortality is present. Our findings highlight the importance of studying multivariate trait relationships as a response to selection for understanding patterns of phenotypic diversification.  相似文献   

15.
Burst escape speed is an effective and widely used behaviour for evading predators, with burst escape speed relying on several different morphological features. However, we know little about how behavioural and underlying morphological attributes change in concert as a response to changes in selective predation regime. We studied intercorrelated trait differentiation of body shape and burst‐swim‐mediating morphology in response to a habitat shift‐related reduction in burst escape speed using larvae of the dragonfly genus Leucorrhinia. Species in this genus underwent a well‐known habitat shift from predatory fish lakes (fish lakes) to predatory fish‐free lakes dominated by large predatory dragonflies (dragonfly lakes) accompanied by relaxed selection on escape burst speed. Results revealed that species from fish lakes that possess faster burst speed have evolved a suite of functionally intercorrelated traits, expressing a wider abdomen, a higher abdominal muscles mass and a larger branchial chamber compared with species from dragonfly lakes. In contrast, populations within species did not show significant differences in muscle mass and branchial chamber size between lake types in three of the species. High multicollinearity among variables suggests that traits have evolved in concert rather than independently when Leucorrhinia shifted from fish lakes to dragonfly lakes. Thus, relaxed selection on burst escape speed in dragonfly‐lake species resulted in a correlated reduction of abdominal muscles and a smaller branchial chamber, likely to save production and/or maintenance costs. Our results highlight the importance of studying integrated behavioural and morphological traits to fully understand the evolution of complex phenotypes.  相似文献   

16.
Habitat‐specific selection pressures have been widely recognized, but whether selection favours different personality types in different habitats has rarely been evaluated. This study aimed to test whether personality‐related differences in annual reproductive success differed between two populations of blue tits (Cyanistes caeruleus) occupying different Mediterranean habitats (oakwood and pinewood). We measured exploration and parental provisioning behaviours and used a path analysis to ask how the interplay between these two behavioural traits affected reproductive success in each of these two habitats. We found that blue tits breeding in the pinewood were slow‐exploring compared to blue tits breeding in the oakwood, suggesting the occurrence of personality‐related differences in settlement, or behavioural plasticity in response to habitat. Exploration behaviour and feeding rates were positively associated, suggesting that they affect each other or that there is an environmental factor affecting both traits simultaneously. Finally, fast explorers were favoured in the pinewood, while there was no selection acting on exploration behaviour in the oak habitat. These findings emphasize the importance of integrating habitat selection, plasticity and personality in the study of behavioural evolution.  相似文献   

17.
The ecological factors responsible for the evolution of individual differences in animal personality (consistent individual differences in the same behaviour across time and contexts) are currently the subject of intense debate. A limited number of ecological factors have been investigated to date, with most attention focusing on the roles of resource competition and predation. We suggest here that parasitism may play a potentially important, but largely overlooked, role in the evolution of animal personalities. We identify two major routes by which parasites might influence the evolution of animal personality. First, because the risk of acquiring parasites can be influenced by an individual's behavioural type, local parasite regimes may impose selection on personality traits and behavioural syndromes (correlations between personality traits). Second, because parasite infections have consequences for aspects of host 'state', parasites might induce the evolution of individual differences in certain types of host behaviour in populations with endemic infections. Also, because infection often leads to specific changes in axes of personality, parasite infections have the potential to decouple behavioural syndromes. Host-parasite systems therefore provide researchers with valuable tools to study personality variation and behavioural syndromes from a proximate and ultimate perspective.  相似文献   

18.
19.
When organisms are faced with new or changing environments, a central challenge is the coordination of adaptive shifts in many different phenotypic traits. Relationships among traits may facilitate or constrain evolutionary responses to selection, depending on whether the direction of selection is aligned or opposed to the pattern of trait correlations. Attempts to predict evolutionary potential in correlated traits generally assume that correlations are stable across time and space; however, increasing evidence suggests that this may not be the case, and flexibility in trait correlations could bias evolutionary trajectories. We examined genetic and environmental influences on variation and covariation in a suite of behavioural traits to understand if and how flexibility in trait correlations influences adaptation to novel environments. We tested the role of genetic and environmental influences on behavioural trait correlations by comparing Trinidadian guppies (Poecilia reticulata) historically adapted to high‐ and low‐predation environments that were reared under native and non‐native environmental conditions. Both high‐ and low‐predation fish exhibited increased behavioural variance when reared under non‐native vs. native environmental conditions, and rearing in the non‐native environment shifted the major axis of variation among behaviours. Our findings emphasize that trait correlations observed in one population or environment may not predict correlations in another and that environmentally induced plasticity in correlations may bias evolutionary divergence in novel environments.  相似文献   

20.
The threespine stickleback fish, Gasterosteus aculeatus, has undergone a remarkable postglacial adaptive radiation in which an ancient oceanic ancestor has given rise to uncountable freshwater populations. The radiation is characterized by repeated, independent evolution of similar derived phenotypes under similar environmental conditions. A common pattern of divergence is caused by differences in habitat that favor morphological and behavioral features that enhance efficiency of feeding on plankton (limnetic ecotypes) vs. those that enhance efficiency of feeding on benthic invertebrates (benthic ecotypes). These two ecotypes exhibit consistently different patterns of courtship and of foraging and cannibalistic behavior (divergent behavioral syndromes). Here, we demonstrate that there also exist differences in aggression toward conspecifics that are likely to be characteristic of the ecotypes. We report differences in patterns of aggression toward rivals between the ecotypes and offer evidence of differences in the patterns of phenotypic plasticity (norms of reaction) for these traits across population types, and of differences in the incorporation of aggressive elements of behavior in courtship. These data support an earlier suggestion that differences in aggressive tendencies could have facilitated assortative mating between the four benthic–limnetic species pairs found in British Columbia lakes, and they demonstrate the need to evaluate divergent behavioral phenotypes in this radiation as phenotypic norms of reaction rather than as fixed traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号