首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Mutants of Escherichia coli K12 with deletions in the nadC-lpd region of the chromosome were obtained for use in studies on the expression of the ace (pyruvate dehydrogenase complex, specific components) and lpd (lipomide dehydrogenase) genes. These were isolated by selecting spontaneous aroP mutants (lacking the general aromatic amino-acid permease and thus resistant to inhibitory aromatic amino-acid analogues) and screening for auxotrophy due to deletions extending into neighbouring genes. From 2892 isolates tested, the AroP- phenotypes of 2322 were confirmed and, of these, 28 stable and independently-derived auxotrophos were designated as deletion mutants. Six nutritionally-distinct categories were recognized: Nad- (8 strains); Nad-Ace-(7): Nad-'Ace-' (3); Ace- (8); 'Ace-' (I); Lpd-(I). The Ace- phenotypes of four isolates designated 'Ace-' were leaky and enzymological studies confirmed that they had less than 7% of parental pyruvate dehydrogenase complex activity. Enzymological studies showed that the 15 Ace- or Nad-Ace- strains all lacked the pyruvate dehydrogenase complex and pyruvate dehydrogenase (EIp) activities and only three retained detectable dihydrolipoamide acetyltransferase (E2p). The one Lpd- strain lacked pyruvate dehydrogenase, dihydrolipoamide acetyltransferase and lipoamide dehydrogenase (E3) activities as well as the activities of the pyruvate and alpha-ketoglutarate dehydrogenase complexes. The results confirmed the gene order nadC-aroP-aceE-aceF-lpd and indicated that no other essential functions are determined by genes within the nadC-lpd region. Resistance to lactate during growth of pps mutants on acetate was directly related to the specific activity of the pyruvate dehydrogenase complex. None of the deletions promoted the high degree of resistance characteristically associated with constitutive expression of the dehydrogenase complex. Six pps mutants having Ace+ or 'Ace-' phenotypes were more sensitive than the parental strains and expression of their ace operons appeared to be affected; most sensitive were the Ace- strains which lacked pyruvate dehydrogenase complex and phosphoenolpyruvate synthetase activities. The lipoamide dehydrogenase activities of the deletion strains (Lpd+) ranged between 30% and 100% of parental levels indicating that expression of their ace operons appeared to be affected; most sensitive were the Ace- strains which lacked pyruvate dehydrogenase complex and phosphoenolpyruvate synthetase activities. The lipoamide dehydrogenase activities of the deletion strains (Lpd+) ranged between 30% and 100% of parental levels indicating that expression of the lpd gene may be affected by the ace operon but can be independent.  相似文献   

4.
Viral attenuation may be due to lowered efficiency of certain steps essential for viral multiplication. For the construction of less neurovirulent strains of poliovirus in vitro, we introduced deletions into the 5' noncoding sequence (742 nucleotides long) of the genomes of the Mahoney and Sabin 1 strains of poliovirus type 1 by using infectious cDNA clones of the virus strains. Plaque sizes shown by deletion mutants were used as a marker for rate of viral proliferation. Deletion mutants of both the strains thus constructed lacked a genome region of nucleotide positions 564 to 726. The sizes of plaques displayed by these deletion mutants were smaller than those by the respective parental viruses, although a phenotype referring to reproductive capacity at different temperatures (rct) of viruses was not affected by introduction of the deletion. Monkey neurovirulence tests were performed on the deletion mutants. The results clearly indicated that the deletion mutants had much less neurovirulence than with the corresponding parent viruses. Production of infectious particles and virus-specific protein synthesis in cells infected with the deletion mutants started later than in those infected with the parental viruses. The rate at which cytopathic effect progressed was also slower in cells infected with the mutants. Phenotypic stability of the deletion mutant for small-plaque phenotype and temperature sensitivity was investigated after passaging the mutant at an elevated temperature of 37.5 degrees C. Our data strongly suggested that the less neurovirulent phenotype introduced by the deletion is very stable during passaging of the virus.  相似文献   

5.
6.
The roles of the capsid protein (CP) and the CP coding sequence of tobacco etch potyvirus (TEV) in genome amplification were analyzed. A series of frameshift-stop codon mutations that interrupted translation of the CP coding sequence at various positions were introduced into the TEV genome. A series of 3' deletion mutants that lacked the CP coding sequence beyond each of the frameshift-stop codon mutations were also produced. In addition, a series of 5' CP deletion mutants were generated. Amplification of genomes containing either frameshift-stop codon insertions after codons 1, 59, 103, and 138 or genomes containing the corresponding 3' deletions of the CP coding sequence was reduced by 100- to 1,000-fold relative to that of the parental genome in inoculated protoplasts. In contrast, a mutant containing a frameshift-stop codon after CP position 189 was amplified to 27% of the level of the parental virus, but the corresponding 3' deletion mutant lacking codons 190 to 261 was nonviable. Deletion mutants lacking CP codons 2 to 100, 2 to 150, 2 to 189, and 2 to 210 were amplified relatively efficiently in protoplasts, but a deletion mutant lacking codons 2 to 230 was nonviable. None of the amplification-defective frameshift-stop codon or deletion mutants was rescued in transgenic cells expressing TEV CP, although the transgenic CP was able to rescue intercellular movement defects of replication-competent CP mutants. Coupled with previous results, these data led to the conclusions that (i) TEV genome amplification requires translation to a position between CP codons 138 and 189 but does not require the CP product and (ii) the TEV CP coding sequence contains a cis-active RNA element between codons 211 and 246. The implications of these findings on mechanisms of RNA replication and genome evolution are discussed.  相似文献   

7.
8.
Shigella flexneri, a facultative intracellular pathogen, is exposed to a variety of environments inside and outside of the human host. Some of these environments may contain significant oxidative stress. S. flexneri mutants were generated with deletions in the major oxidative stress regulators oxyR and/or soxRS to test their importance in Shigella biology. Strains that contained a deletion of oxyR had reduced growth and survival during aerobic growth, but not microaerobic growth. The mutants were also defective in surviving exposure to oxidative stress: oxyR mutants were sensitive to hydrogen peroxide, while soxRS mutants were sensitive to superoxide. Although the ΔsoxRS, ΔoxyR, and ΔoxyR/ΔsoxRS mutant Shigellae survived similarly to the parental strains within macrophages, the mutants formed plaques on Henle cell monolayers that were slightly smaller than the plaques formed by the wildtype strain.  相似文献   

9.
Budding yeast shows a progressive decline in viability after entering stationary phase, a phenomenon known as chronological aging. We show here that the fission yeast Schizosaccharomyces pombe also undergoes chronological aging and that the process is regulated by genes controlling two related nutrient signalling pathways. The first pathway includes the serine/threonine cAMP-activated protein kinase Pka1 and the second pathway comprises the serine/threonine kinase Sck2, a homologue of Saccharomyces cerevisiae SCH9. A double mutant for pka1 and sck2 displayed an additive effect on prolonging the fission yeast lifespan, suggesting that these genes regulate related but independent pathways. These long-lived mutants also accumulated less reactive oxygen species and had a delayed initiation of apoptosis compared with wild-type cells. We also found that strains carrying pka1 deletion but not those with sck2 deletion gained resistance to oxidative stress due to exposure to H(2)O(2) or menadione. On the other hand, the additional increase in lifespan shown by the Deltapka1Deltasck2 double-mutant strain correlated with an increased resistance to both oxidative stress and heat shock. These results underscore the importance of nutrient signalling pathways and reactive oxygen species on organismal lifespan and establish S. pombe as a new model organism to study the molecular mechanisms underlying aging.  相似文献   

10.
The frequency of tonB trp deletions varies in different strains and substrains of Escherichia coli. Studies with chromosomal hybrids constructed by transducing various segments of the cysB-trp-suIII region from K-12(Ymel) into K-12(W3110) indicate that the characteristic low deletion frequency of K-12(Ymel) is determined largely by the (genetic) structure of the trp-suIII region of the chromosome. Transduction of the trp region from K-12(W3110) or K-12(Ymel) into strain B has little effect on the frequency of tonB trp deletions in that strain. When tonB trp deletions occur at 42 C rather than at 37 C, there is a significant reduction in the frequency of deletions in all strains examined except K-12(Ymel) and hybrids exhibiting a Ymel deletion pattern. The magnitude of this temperature effect in different K-12 strains increases proportionally with the frequency of tonB trp deletions at 37 C. At 42 C the frequency of tonB trp deletions in all K-12 strains approaches the low frequency observed for Ymel at 37 or 42 C. In contrast, spontaneous deletions in another region of the genome which simultaneously result in resistance to phages T7 and lambda and in proline auxotrophy (tfrA pro deletions) occur at a constant frequency regardless of growth temperature or the structure of the chromosome in the trp region. Two mutants of strain KB30 obtained after treatment with nitrosoguanidine show very low tonB trp deletion frequencies. The alterations in both mutants map in the trp region of the chromosome. These studies indicate that the structure of the cysB-trp-suIII region is responsible for many of the characteristic deletion frequencies observed.  相似文献   

11.
Mark L Farman 《Genetics》2002,160(1):137-148
The Magnaporthe grisea BUF1 gene suffers high-frequency mutation in certain genetic crosses, resulting in buff-colored progeny. Analysis of 16 buf1 mutants arising from a cross with a mutation frequency of 25% revealed that, in every case, the BUF1 gene was deleted. The deletions occurred in only one of the parental chromosomes and were due to intrachromosomal recombination. Tetrad analysis revealed that deletions occurred in 44% of meioses and usually affected both chromatids of the mutable chromosome. This suggests that they happen before the premeiotic round of DNA synthesis. However, they were also almost entirely restricted to heteroallelic crosses. This, together with the discovery of numerous repetitive elements that were present only in the mutable BUF1 locus, suggests that the deletion process is sensitive to pairing interactions between homologous chromosomes, such that only unpaired loci are subject to deletion. Given that karyogamy is not supposed to occur until after premeiotic DNA replication in Pyrenomycetous fungi such as M. grisea, this latter observation would place the time of deletion during, or after, DNA synthesis. These conflicting results suggest that karyogamy might actually precede DNA replication in Pyrenomycetous fungi or that parts of the genome remain unreplicated until after karyogamy and subsequent chromosome pairing have taken place.  相似文献   

12.
We aim to create an Aspergillus oryzae mutant with a highly reduced chromosome, but better growth, by eliminating the nonessential regions coding various dispensable functions for its better industrial use. In our previous study, we successfully determined the outline of essential and nonessential regions by constructing a series of large chromosomal deletions in A. oryzae chromosome 7. Based on these results, we here constructed two mutants, designated RkuAF7A and RkuAF7B, lacking 24.7 and 24% (725 and 705 kb) of wild type chromosome 7, respectively, using multiple large-scale chromosomal deletions in a recursive pyrG-mediated transformation system. Both showed higher amylase activity in DPY liquid medium and faster growth rate on malt agar medium relative to the parent strain. The two mutants also displayed soft fluffy hyphal morphology when grown in DPY liquid media. In addition, the gene expression profile obtained by DNA microarray indicated that although the deletion regions were fewer than 2% of the whole genome, the effect on whole gene expression exceeded 20%. Among these, the genes involved in secondary metabolism showed a relatively large change in their gene expression levels. Together, the constructed mutants showing better growth and potential usefulness is possibly suitable for further industrial use.  相似文献   

13.
R E Wolf  Jr  J A Cool 《Journal of bacteriology》1980,141(3):1222-1229
A genetic map was prepared for gnd, the gene of Escherichia coli which encodes the metabolically regulated 6-phosphogluconate dehydrogenase. Direct selection methods were used for the isolation of mutants with deletions that define the respective ends of gnd. These selections depended on the availability of a defective lysogen in which gnd was present on a lambda h80 dgnd his prophage located at the att phi 80 region of the chromosome. Mutants with deletions entering gnd from the his-distal end were selected as Gnd- TonB- mutants. Mutants with his-proximal gnd deletions were selected as Gnd-, temperature-resistant mutants of a specially prepared stable lysogen. Gnd- mutants were also isolated after mutagenesis with bacteriophage Mu cts61, and genetic tests were used to determine which mutants carry a Mu cts61 prophage in gnd. The deletion mutations were mapped against each other and against the insertion mutations through the use of F' merodiploid strains. The insertion mutations mapped at seven distinct sites in gnd; three mapped under the deletions defining the his-proximal portion of the gene and three mapped with the his-distal deletions.  相似文献   

14.
Four mutants of polyoma virus lacking endonuclease HindII site 1 were isolated and characterized with respect to the VP1 coding sequence. Three of these mutants had deletions that removed 0.2 to 0.3% of the genome. All three deletion mutants encoded VP1 proteins that were smaller than wild type and that lacked one or more tryptic peptides normally found in the wild-type VP1 protein. Our results suggest the HindII site 1 is at, or very near, the carboxy terminal end of the coding sequence for VP1. A model for the peptide organization in that region is presented.  相似文献   

15.
A genetic locus essential for the formate-dependent growth of Bradyrhizobium japonicum was isolated by complementation of ethyl methanesulfonate-induced mutants with a cosmid gene library of B. japonicum DNA. Three related cosmids containing 18.7 kilobase pairs of B. japonicum DNA in common were identified as being able to restore formate-dependent growth capability to mutants lacking either ribulosebisphosphate carboxylase or both ribulosebisphosphate carboxylase and phosphoribulokinase activities. To further localize the complementing gene(s), a series of four deletions spanning a total of 16.1 kilobase pairs were introduced into the B. japonicum chromosome. Each resulting deletion mutant lacked formate dehydrogenase activity and lacked ribulosebisphosphate carboxylase activity and immunologically detectable protein. Three of the four also lacked phosphoribulokinase activity. Two other mutants in which the deletion-bearing recombinant plasmid had integrated into the chromosome also lacked ribulosebisphosphate carboxylase activity and protein and phosphoribulokinase activities. The genetic locus defined by these mutants could contain the structural genes for these enzymes or a regulatory gene(s) controlling their expression or both.  相似文献   

16.
Reyes G  Romans A  Nguyen CK  May GS 《Eukaryotic cell》2006,5(11):1934-1940
The genome of Aspergillus fumigatus has four genes that encode mitogen-activated protein kinases (MAPKs), sakA/hogA, mpkA, mpkB, and mpkC. The functions of the MpkB and MpkC MAPKs are unknown for A. fumigatus and the closely related and genetically amenable species Aspergillus nidulans. mpkC deletion mutants of A. fumigatus were made and their phenotypes characterized. The mpkC deletion mutants were viable and had normal conidial germination and hyphal growth on minimal or complete media. This is in contrast to deletion mutants with deletions in the closely related MAPK gene sakA/hogA that we previously reported had a nitrogen source-dependent germination phenotype. Similarly, the growth of the mpkC deletion mutants was wild type on high-osmolarity medium. Consistent with these two MAP kinase genes regulating different cellular responses, we determined that the mpkC deletion mutants were unable to grow on minimal medium with sorbitol or mannitol as the sole carbon source. This result implicates MpkC signaling in carbon source utilization. Changes in mRNA levels for sakA and mpkC were measured in response to hypertonic stress, oxidative stress, and a shift from glucose to sorbitol to determine if there was overlap in the SakA and MpkC signaling pathways. These studies demonstrated that SakA- and MpkC-dependent patterns of change in mRNA levels are distinct and have minimal overlap in response to these environmental stresses.  相似文献   

17.
High-cell-density fermentation for industrial production of chemicals can impose numerous stresses on cells due to high substrate, product, and by-product concentrations; high osmolarity; reactive oxygen species; and elevated temperatures. There is a need to develop platform strains of industrial microorganisms that are more tolerant toward these typical processing conditions. In this study, the growth of six industrially relevant strains of Escherichia coli was characterized under eight stress conditions representative of fed-batch fermentation, and strains W and BL21(DE3) were selected as platforms for transposon (Tn) mutagenesis due to favorable resistance characteristics. Selection experiments, followed by either targeted or genome-wide next-generation-sequencing-based Tn insertion site determination, were performed to identify mutants with improved growth properties under a subset of three stress conditions and two combinations of individual stresses. A subset of the identified loss-of-function mutants were selected for a combinatorial approach, where strains with combinations of two and three gene deletions were systematically constructed and tested for single and multistress resistance. These approaches allowed identification of (i) strain-background-specific stress resistance phenotypes, (ii) novel gene deletion mutants in E. coli that confer single and multistress resistance in a strain-background-dependent manner, and (iii) synergistic effects of multiple gene deletions that confer improved resistance over single deletions. The results of this study underscore the suboptimality and strain-specific variability of the genetic network regulating growth under stressful conditions and suggest that further exploration of the combinatorial gene deletion space in multiple strain backgrounds is needed for optimizing strains for microbial bioprocessing applications.  相似文献   

18.
The effect of mutations in the genes encoding dehydrogenases and oxidases on the resistance of the Synechocystis sp. PCC 6803 cyanobacterium to menadione, an oxidative stress inducer, was studied. An enhanced sensitivity to menadione was observed in the mutants carrying inserts in the drgA gene encoding the NAD(P)H:quinone oxidoreductase (NQR) and in the ndhB gene encoding the subunit of NDH-1 complex. The menadione resistance in the mutants lacking oxidases (Ox), succinate dehydrogenase (SDH), and NDH-2 dehydrogenase do not differ from those in wild-type cells. An additional mutation in the drgA gene increased the sensitivity to menadione in the NDH-2 and Ox mutants. The double mutant that lacks both SDH and NQR was not viable. The expression of the drgA gene decreased during cell incubation in the dark but increased in the presence of glucose both in the dark and in light. Under photoautotrophic growth conditions, the dehydrogenase activity of the cells mainly depends on the NQR and NDH-1 functions. The re-reduction rate of the photosystem I reaction center (P700+) increased in wild-type and NDH-1 mutants after its oxidation with white light in the presence of DCMU after addition of menadione, and it decreased in the NQR mutant. The reduction of P700+ was accelerated in the presence of menadiol in all the strains studied. These results suggest that NQR provides defense of cyanobacterium cells from the toxic effect of menadione via its two-electron reduction to menadiol. An increased sensitivity of the NDH-1 mutant to menadione may result from the inhibition of respiration and the cyclic electron transport in photosystem I.  相似文献   

19.
Genome rearrangements, a common feature of Candida albicans isolates, are often associated with the acquisition of antifungal drug resistance. In Saccharomyces cerevisiae, perturbations in the S-phase checkpoints result in the same sort of Gross Chromosomal Rearrangements (GCRs) observed in C. albicans. Several proteins are involved in the S. cerevisiae cell cycle checkpoints, including Mec1p, a protein kinase of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family and the central player in the DNA damage checkpoint. Sgs1p, the ortholog of BLM, the Bloom's syndrome gene, is a RecQ-related DNA helicase; cells from BLM patients are characterized by an increase in genome instability. Yeast strains bearing deletions in MEC1 or SGS1 are viable (in contrast to the inviability seen with loss of MEC1 in S. cerevisiae) but the different deletion mutants have significantly different phenotypes. The mec1Δ/Δ colonies have a wild-type colony morphology, while the sgs1Δ/Δ mutants are slow-growing, producing wrinkled colonies with pseudohyphal-like cells. The mec1Δ/Δ mutants are only sensitive to ethylmethane sulfonate (EMS), methylmethane sulfonate (MMS), and hydroxyurea (HU) but the sgs1Δ/Δ mutants exhibit a high sensitivity to all DNA-damaging agents tested. In an assay for chromosome 1 integrity, the mec1Δ/Δ mutants exhibit an increase in genome instability; no change was observed in the sgs1Δ/Δ mutants. Finally, loss of MEC1 does not affect sensitivity to the antifungal drug fluconazole, while loss of SGS1 leads to an increased susceptibility to fluconazole. Neither deletion elevated the level of antifungal drug resistance acquisition.  相似文献   

20.
Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10(-3) to 10(-4) per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号