首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Binding of interleukin-6 (IL-6) to its specific receptor IL-6R is a prerequisite for the activation of the signal-transducing receptor glycoprotein 130 (gp130). A soluble form of the IL-6R (sIL-6R) in complex with IL-6 can activate cells lacking membrane-bound IL-6R (trans-signaling). IL-6-trans-signaling is counterbalanced by a naturally occurring, soluble form of gp130 (sgp130), whereby signaling via the membrane-bound IL-6R is not affected. Many inflammatory and neoplastic disorders are driven by IL-6 trans-signaling. By analysis of the three-dimensional structure of gp130 in complex with IL-6 and sIL-6R, we identified amino acid side chains in gp130 as candidates for the generation of sgp130 muteins with increased binding affinity to IL-6/sIL-6R. In addition, with information from modeling and NMR analysis of the membrane proximal domain of gp130, we generated a more stable variant of sgp130Fc. Proteins were tested for binding to the IL-6/sIL-6R-complex, for inhibition of IL-6/sIL-6R-induced cell proliferation and of acute phase gene expression. Several mutations showed an additive effect in improving the binding affinity of human sgp130 toward human IL-6/sIL-6R. Finally, we demonstrate the species specificity of these mutations in the optimal triple mutein (T102Y/Q113F/N114L) both in vitro and in a mouse model of acute inflammation.  相似文献   

2.
3.
IL-6 trans-signaling via the soluble IL-6 receptor (sIL-6R) plays a critical role in chronic inflammation and cancer. Soluble gp130 (sgp130) specifically inhibits IL-6 trans-signaling but was described to not interfere with classic signaling via the membrane-bound IL-6R. Physiological and most pathophysiological conditions are characterized by a molar excess of serum sIL-6R over IL-6 characterized by free IL-6 and IL-6 found in IL-6·sIL-6R complexes allowing both classic and trans-signaling. Surprisingly, under these conditions, sgp130 was able to trap all free IL-6 molecules in IL-6·sIL-6R·sgp130 complexes, resulting in inhibition of classic signaling. Because a significant fraction of IL-6 molecules did not form complexes with sIL-6R, our results demonstrate that compared with the anti-IL-6R antibody tocilizumab or the anti-trans-signaling monoclonal antibody 25F10, much lower concentrations of the dimeric sgp130Fc were sufficient to block trans-signaling. In vivo, sgp130Fc blocked IL-6 signaling in the colon but not in liver and lung, indicating that the colon is a prominent target of IL-6 trans-signaling. Our results point to a so far unanticipated role of sgp130 in the blockade of classic signaling and indicate that in vivo only low therapeutic concentrations of sgp130Fc guarantee blockade of IL-6 trans-signaling without affecting IL-6 classic signaling.  相似文献   

4.
Soluble cytokine receptors are frequently found in human serum, most of them possessing antagonistic properties. The Interleukin 6 receptor (IL-6R) is found as a transmembrane protein on hepatocytes and subsets of leukocytes, but soluble isoforms of the IL-6R (sIL-6R) are generated by alternative splicing or by limited proteolysis of the A Disintegrin And Metalloproteinases (ADAM) gene family members ADAM10 and ADAM17. Importantly, the sIL-6R in complex with its ligand Interleukin 6 (IL-6) has agonistic functions and requires cells expressing the signal transducing ß-receptor gp130 but not the membrane-bound IL-6R. We have called this process IL-6 trans-signaling. Naturally occurring isoforms of soluble gp130 (sgp130), which are generated by alternative splicing, are natural inhibitors of IL-6 trans-signaling, leaving IL-6 classic signaling via the membrane-bound IL-6R unaffected. We used recombinant sgp130Fc protein and recently generated transgenic mice expressing high levels of sgp130Fc to discriminate between classic and trans-signaling in vivo, and demonstrated that IL-6 trans-signaling is critically involved in generation and maintenance of several inflammatory and autoimmune diseases including chronic inflammatory bowel disease, rheumatoid arthritis, peritonitis and asthma, as well as inflammation-induced colon cancer.  相似文献   

5.
Signal transduction in response to interleukin-6 (IL-6) requires binding of the cytokine to its receptor (IL-6R) and subsequent homodimerization of the signal transducer gp130. The complex of IL-6 and soluble IL-6R (sIL-6R) triggers dimerization of gp130 and induces responses on cells that do not express membrane bound IL-6R. Naturally occurring soluble gp130 (sgp130) can be found in a ternary complex with IL-6 and sIL-6R. We created recombinant sgp130 proteins that showed binding to IL-6 in complex with sIL-6R and inhibited IL-6/sIL-6R induced proliferation of BAF/3 cells expressing gp130. Surprisingly, sgp130 proteins did not affect IL-6 stimulated proliferation of BAF/3 cells expressing gp130 and membrane bound IL-6R, indicating that sgp130 did not interfere with IL-6 bound to IL-6R on the cell surface. Additionally, sgp130 partially inhibited proliferation induced by leukemia inhibitory factor (LIF) and oncostatin M (OSM) albeit at higher concentrations. Recombinant sgp130 protein could be used to block the anti-apoptotic effect of sIL-6R on lamina propria cells from Crohn disease patients. We conclude that sgp130 is the natural inhibitor of IL-6 responses dependent on sIL-6R. Furthermore, recombinant sgp130 is expected to be a valuable therapeutic tool to specifically block disease states in which sIL-6R transsignaling responses exist, e.g. in morbus Crohn disease.  相似文献   

6.
Classic IL-6 signaling is conditioned by the transmembrane receptor (IL-6R) and homodimerization of gp130. During trans-signaling, IL-6 binds to soluble IL-6R (sIL-6R), enabling activation of cells expressing solely gp130. Soluble gp130 (sgp130) selectively inhibits IL-6 trans-signaling. To characterize amniotic fluid (AF) IL-6 trans-signaling molecules (IL-6, sIL-6R, sgp130) in normal gestations and pregnancies complicated by intra-amniotic inflammation (IAI), we studied 301 women during second trimester (n = 39), third trimester (n = 40), and preterm labor with intact (n = 131, 85 negative IAI and 46 positive IAI) or preterm premature rupture of membranes (PPROM; n = 91, 61 negative IAI and 30 positive IAI). ELISA, Western blotting, and real-time RT-PCR were used to investigate AF, placenta, and amniochorion for protein and mRNA expression of sIL-6R, sgp130, IL-6R, and gp130. Tissues were immunostained for IL-6R, gp130, CD15(+) (polymorphonuclear), and CD3(+) (T cell) inflammatory cells. The ability of sIL-6R and sgp130 to modulate basal and LPS-stimulated release of amniochorion matrix metalloprotease-9 was tested ex vivo. We showed that in physiologic gestations, AF sgp130 decreases toward term. AF IL-6 and sIL-6R were increased in IAI, whereas sgp130 was decreased in PPROM. Our results suggested that fetal membranes are the probable source of AF sIL-6R and sgp130. Immunohistochemistry and RT-PCR revealed increased IL-6R and decreased gp130 expression in amniochorion of women with IAI. Ex vivo, sIL-6R and LPS augmented amniochorion matrix metalloprotease-9 release, whereas sgp130 opposed this effect. We conclude that IL-6 trans-signaling molecules are physiologic constituents of the AF regulated by gestational age and inflammation. PPROM likely involves functional loss of sgp130.  相似文献   

7.
8.
The transmembrane glycoprotein gp130 is the common signal transducing receptor subunit of the IL-6-type cytokines. The gp130 extracellular part is predicted to consist of six individual domains. Whereas the role of the three membrane-distal domains (D1-D3) in binding of IL-6 and IL-11 is well established, the function of the membrane-proximal domains (D4-D6) is unclear. Mapping of a neutralizing mAb to the membrane-proximal part of gp130 suggests a functional role of D4-D6 in receptor activation. Individual deletion of these three domains differentially interferes with ligand binding of the soluble and membrane-bound receptors. All deletion mutants do not signal in response to IL-6 and IL-11. The deletion mutants Delta4 and, to a lesser extent, Delta6 are still activated by agonistic monoclonal gp130 Abs, whereas the deletion mutant Delta5 does not respond. Because membrane-bound Delta5 binds IL-6/soluble IL-6R as does wild-type gp130, but does not transduce a signal in response to various stimuli, this domain plays a prominent role in coupling of ligand binding and signal transduction. Replacement of the fifth domain of gp130 by the corresponding domain of the homologous G-CSF receptor leads to constitutive activation of the chimera upon overexpression in COS-7 cells. In HepG2 cells this mutant responds to IL-6 comparable to wild-type gp130. Our findings suggest a functional role of the membrane-proximal domains of gp130 in receptor activation. Thus, within the hematopoietic receptor family the mechanism of receptor activation critically depends on the architecture of the receptor ectodomain.  相似文献   

9.
Interleukin-6 (IL-6) is used as a growth factor by various tumor cells. It binds to a gp80 specific receptor (IL-6R) and then to a gp130 transducing chain. Both receptor chains are released as soluble functional proteins which circulate in biological fluids. With a view to studying the physiological role of these soluble receptors, both proteins were purified from human plasma. Surface plasmon resonance was used to measure the kinetic constants of equilibria between IL-6 and natural sIL-6R, and between the IL-6/sIL-6R complex and soluble gp130. Kd values were found to be 0. 9 and 2.3 nM respectively. Soluble natural IL-6R and gp130 were also found to interact with a Kd of 2.8 nM in the absence of IL-6. By using these Kd values, a mathematical simulation predicted that 1) within a large range of IL-6, sIL-6R and sgp130 concentrations, free IL-6 represents 30% of the total circulating cytokine, 2) sIL-6R overconcentrations lead to dramatic changes of the concentration of free IL-6, 3) increased concentrations of sgp130 should produce an efficient buffering effect on the IL-6/sIL-6R complex without incidence on the level of free IL-6. According to this model, the IL-6/sIL-6R complex appears to be an important support of IL-6 signaling in the most commonly encountered in vivo situations. The concentration of this complex is directly under the control of the concentration of sIL-6R; its bio-availability should be efficiently buffered by increased sgp130 concentrations.  相似文献   

10.
11.
Interleukin-6 (IL-6) is used as a growth factor by various tumor cells. It binds to a gp80 specific receptor (IL-6R) and then to a gp130 transducing chain. Both receptor chains are released as soluble functional proteins which circulate in biological fluids. To study the physiological role of these soluble receptors, both proteins were purified from human plasma and the kinetic constants of equilibria between IL-6 and its natural soluble IL-6R (sIL-6R) and gp130 receptor (sgp130) were measured using surface plasmon resonance analysis. Unexpectedly, natural sIL-6R and natural sgp130 were found to interact (Kd = 2.8 nM) in the absence of IL-6. No interaction was seen between the recombinant soluble receptors or between either natural soluble receptor and its recombinant partner. This binary complex was not due to copurification of IL-6 and was detected in human plasma of healthy donors. It results from either direct interaction between the two natural soluble receptors or indirect binding mediated by a yet unidentified copurified plasma molecule playing the role of an IL-6 antagonist. Once formed, the binary complex was found to be unable to bind IL-6. Soluble gp130 had already been shown to inhibit IL-6 signaling by inactivating the IL-6/IL-6R complex. In addition we show that, in the absence of IL-6, circulating natural sgp130 is able to inhibit directly the circulating sIL-6R that is a strong synergic molecule of IL-6 signaling.  相似文献   

12.
The helical cytokine interleukin (IL) 6 and its specific binding subunit IL-6R alpha form a 1:1 complex which, by promoting homodimerization of the signalling subunit gp130 on the surface of target cells, triggers intracellular responses. We expressed differently tagged forms of gp130 and used them in solution-phase binding assays to show that the soluble extracellular domains of gp130 undergo dimerization in the absence of membranes. In vitro receptor assembly reactions were also performed in the presence of two sets of IL-6 variants carrying amino acid substitutions in two distinct areas of the cytokine surface (site 2, comprising exposed residues in the A and C helices, and site 3, in the terminal part of the CD loop). The binding affinity to IL-6R alpha of these variants is normal but their biological activity is poor or absent. We demonstrate here that both the site 2 and site 3 IL-6 variants complexed with IL-6R alpha bind a single gp130 molecule but are unable to dimerize it, whereas the combined site 2/3 variants lose the ability to interact with gp130. The binding properties of these variants in vitro, and the result of using a neutralizing monoclonal antibody directed against site 3, lead to the conclusion that gp130 dimer is formed through direct binding at two independent and differently oriented sites on IL-6. Immunoprecipitation experiments further reveal that the fully assembled receptor complex is composed of two IL-6, two IL-6R alpha and two gp130 molecules. We propose here a model representing the IL-6 receptor complex as hexameric, which might be common to other helical cytokines.  相似文献   

13.
The soluble IL-6 receptor (sIL-6R) can increase IL-6-induced signalling by forming a complex with IL-6 and membrane-bound gp130 (the receptor beta chain which transduces signals). The conditions affecting this response to sIL-6R were studied using fibrinogen release from HepG2 hepatocytes. Exogenous sIL-6R had no effect alone or in the presence of a submaximal concentration of IL-6, but increased responses to supramaximal IL-6 concentrations in a concentration-related manner. Dexamethasone increased the expression of the membrane IL-6R and endogenous sIL6R release, and increased responses to supramaximal but not submaximal IL-6 concentrations. The amount of endogenous sIL-6R released is relatively small and is unlikely to influence the effects of the exogenous sIL-6R. The observed concentration-related decrease in sIL-6R production in the presence of IL-6 may indicate internalization of ligand/receptor complexes. This would significantly decrease the amount of IL-6R (soluble or membrane) available for signalling and limit continued functional response later in the cultures. These data indicate that the major factor influencing responses to exogenous sIL-6R is an excess of IL-6 which is necessary to form complexes with the sIL-6R, which can then interact with gp130 to increase signalling.  相似文献   

14.
Here, we report the analysis of the structure-function relationship of the extracellular region of human interleukin 6 receptor (IL-6R). Upon binding of IL-6, IL-6R becomes associated extracellularly with a non-IL-6-binding but signal transducing molecule, gp130, and the IL-6 signal is generated. In this region, the cytokine receptor family domain, but not the immunoglobulin-like domain, was responsible both for IL-6 binding and for signal transduction through gp130. Because a soluble, extracellular portion of IL-6R (sIL-6R) could bind IL-6 and mediate IL-6 functions through gp130, amino acid substitutions were introduced into sIL-6R by site-directed mutagenesis. The results, together with the previously proposed tertiary structure model, suggested that the amino acid residues critical for IL-6 binding have a tendency to be distributed to the hinge region between the two 'barrel'-like fibronectin type III modules and to the same side of these two 'barrels'. Amino acid residues, of which substitutions barely affected the IL-6-binding but did abolish the IL-6 signalling capability of sIL-6R, were identified and found to be located mainly in the membrane proximal half of the second barrel. sIL-6R mutants carrying such substitutions lacked the capacity to associate with gp130 in the presence of IL-6.  相似文献   

15.
Purpose: Recent studies indicate that the effects of interleukin 6 (IL-6) realized via soluble IL-6 receptor (sIL-6R) facilitate the development of various pathological processes. Soluble gp130 (sgp130) is a naturally occurring inhibitor of signal transduction via this pathway. In this study, we assessed the relationship between circulating levels of IL-6, sIL-6R and sgp130 and severity of coronary atherosclerosis in patients with stable coronary artery disease (CAD).

Methods: Plasma levels of IL-6, sIL-6R and sgp130 were measured in patients with atherosclerotic coronary lesions (n?=?128, group 1) and with intact coronary arteries (n?=?48, group 2). The severity of coronary atherosclerosis was evaluated by the number of affected arteries and by Gensini Score index.

Results: Circulating IL-6 levels in group 1 were significantly higher than those in group 2. The levels of sIL-6R did not differ considerably in both the groups. The levels of sgp130 in group 1 were significantly lower than in group 2. A negative correlation has been revealed between sgp130 levels and the number of affected coronary arteries and Gensini Score index.

Conclusions: Serum concentration of sgp130 in patients with stable CAD is inversely related to severity of coronary damage. Low sgp130 level may serve as an additional indicator of coronary atherosclerosis severity.  相似文献   

16.
The activation of cells that do not express the membrane bound interleukin-6 6 receptor (IL-6R) by IL-6 and the soluble IL-6 receptor (sIL-6R) is termed transsignalling. Transsignalling may be an pathogenetic factor in human diseases as diverse as multiple myeloma (MM), Castleman's disease, prostate carcinoma, Crohn's disease, systemic sclerosis, Still's disease, osteoporosis and cardiovascular diseases. IL-6 and sIL-6R may directly or indirectly enhance their own production on endothelial or bone marrow stromal cells. Positive feedback autocrine loops thus created in affected organs may either cause or maintain disease progression. In autoimmune or vasculitic disease, the ability of the IL-6/sIL-6R complex to inhibit apoptosis of autoreactive T-cells may be central to the development of tissue specific autoimmunity. The anti-apoptotic effect of the IL-6/sIL-6R complex may be involved in tumour genesis and resistance to chemotherapy.Only in rare cases, where counterregulation has failed, there is a notable systemic effect of IL-6/sIL-6R. Appropriate animal models are necessary to establish the pathogenetic role of the IL-6/sIL-6R complex. A specific treatment option for diseases influenced by the sIL-6R could be based on gp130-Fc, a soluble gp130 (sgp130) linked to the Fc-fragment of IgG1. gp130-Fc has shown efficacy in vivo in animal models of Crohn's disease.  相似文献   

17.

Introduction  

Interleukin-6 (IL-6) is a key player in systemic arthritis, involved in inflammation and joint destruction. IL-6 signalling has also been revealed in nerve cells. Recently, IL-6 and in particular IL-6 together with its soluble IL-6 receptor (sIL-6R) were shown to induce a long-lasting robust sensitization of joint nociceptors for mechanical stimuli which was difficult to reverse, suggesting that IL-6 signalling plays a significant role in the generation and maintenance of arthritic pain. Here we tested in a preclinical model of arthritis, antigen-induced arthritis (AIA) in the rat, whether systemic or local neutralization of IL-6/sIL-6R complexes with soluble glycoprotein 130 (sgp130) alters arthritic pain and how sgp130 influences the inflammatory process in AIA.  相似文献   

18.
Human osteoblasts produce interleukin-6 (IL-6) and respond to IL-6 in the presence of soluble IL-6 receptor (sIL-6R), but the cell surface expression of IL-6R and the mechanism of sIL-6R production are largely unknown. Three different human osteoblast-like cell lines (MG-63, HOS, and SaOS-2) and bone marrow-derived primary human osteoblasts expressed both IL-6R and gp130 as determined by flow cytometry and immunoprecipitation. However, the membrane-bound IL-6R was nonfunctional, as significant tyrosine phosphorylation of gp130 did not occur in the presence of IL-6. Phorbol myristate acetate induced a dramatic increase of both IL-6R shedding (i.e. the production of sIL-6R) and IL-6 release in osteoblast cultures, but the cell surface expression of gp130 remained unchanged. IL-6 complexed with sIL-6R, either exogenously introduced or derived from the nonfunctional cell surface form by shedding, induced rapid tyrosine phosphorylation of gp130. This effect was inhibited by neutralizing antibodies to either sIL-6R or gp130, indicating that the gp130 activation was induced by IL-6/sIL-6R/gp130 interaction. Protein kinase C inhibitors blocked phorbol myristate acetate-induced and spontaneous shedding of IL-6R resulting in the absence of sIL-6R in the culture medium, which in turn also prevented the activation of gp130. In conclusion, human osteoblasts express cell surface IL-6R, which is unable to transmit IL-6-induced signals until it is shed into its soluble form. This unique mechanism provides the flexibility for osteoblasts to control their own responsiveness to IL-6 via the activation of an IL-6R sheddase, resulting in an immediate production of functionally active osteoblast-derived sIL-6R.  相似文献   

19.
The high affinity interleukin-6 (IL-6) receptor is a hexameric complex consisting of two molecules each of IL-6, IL-6 receptor (IL-6R), and the high affinity converter and signaling molecule, gp130. The extracellular "soluble" part of the IL-6R (sIL-6R) consists of three domains: an amino-terminal Ig-like domain and two fibronectin-type III (FN III) domains. The two FN III domains comprise the cytokine-binding domain defined by a set of 4 conserved cysteine residues and a WSXWS sequence motif. Here, we have determined the disulfide structure of the human sIL-6R by peptide mapping in the absence and presence of reducing agent. Mass spectrometric analysis of these peptides revealed four disulfide bonds and two free cysteines. The disulfides Cys102-Cys113 and Cys146-Cys157 are consistent with known cytokine-binding domain motifs, and Cys28-Cys77 with known Ig superfamily domains. An unusual cysteine connectivity between Cys6-Cys174, which links the Ig-like and NH2-terminal FN III domains causing them to fold back onto each other, has not previously been observed among cytokine receptors. The two free cysteines (Cys192 and Cys258) were detected as cysteinyl-cysteines, although a small proportion of Cys258 was reactive with the alkylating agent 4-vinylpyridine. Of the four potential N-glycosylation sites, carbohydrate moieties were identified on Asn36, Asn74, and Asn202, but not on Asn226.  相似文献   

20.
The soluble IL-6 receptors: serum levels and biological function.   总被引:8,自引:0,他引:8  
IL-6 exerts its biological activities through interaction with specific receptors expressed on the surface of target cells. IL-6 binds first to a low-affinity (10(-9) M) subunit, a 80 kDa glycoprotein also called gp80 or IL-6R alpha. The IL-6/IL-6R alpha complex recruits the signal-transducing b subunit, a 130 kDa glycoprotein called gp130. The association of gp130 with IL-6 and IL-6R alpha leads to the formation of the high-affinity IL-6 receptor complex, to the linkage of two gp130 subunits and to signal transduction. Soluble forms of both receptors have been described and found in biological fluids. Soluble cytokine receptors are generated by either proteolytic cleavage of their membrane moiety or by alternative splicing. Both mechanisms have been described for sIL-6R and sgp130 formation. Interestingly, the association of IL-6 with the soluble form of IL-6R alpha is capable of eliciting a biological response in cells that express only the membrane gp130. This type of activation, called "trans-signalling", renders virtually all cells capable of responding to IL-6/sIL-6R alpha complexes, making for a large new spectrum of IL-6 activities, ranging from the control of the immune response to involvement in pathological states. In this review the biological activities of IL-6 will be considered in the light of new knowledge concerning the association of IL-6 and the soluble IL-6 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号