首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Arrays of regularly spaced nucleosomes are a hallmark of chromatin, but it remains unclear how they are generated. Recent genome-wide studies, in vitro and in vivo, showed constant nucleosome spacing even if the histone concentration was experimentally reduced. This counters the long-held assumption that nucleosome density determines spacing and calls for factors keeping spacing constant regardless of nucleosome density. We call this a clamping activity. Here, we show in a purified system that ISWI- and CHD1-type nucleosome remodelers have a clamping activity such that they not only generate regularly spaced nucleosome arrays but also generate constant spacing regardless of nucleosome density. This points to a functionally attractive nucleosome interaction that could be mediated either directly by nucleosome-nucleosome contacts or indirectly through the remodelers. Mutant Drosophila melanogaster ISWI without the HAND-SANT-SLIDE (HSS) domain had no detectable spacing activity even though it is known to remodel and slide nucleosomes. This suggests that the role of ISWI remodelers in generating constant spacing is not just to mediate nucleosome sliding; they actively contribute to the attractive interaction. Additional factors are necessary to set physiological spacing in absolute terms.  相似文献   

3.
Nucleosomes are actively positioned along DNA by ATP-dependent, chromatin remodelling factors. A structural model for the ISW1a chromatin remodelling factor from Saccharomyces cerevisiae in complex with a dinucleosome substrate was constructed from the X-ray structures of ISW1a (ΔATPase) with and without DNA bound, two different cryo-EM (cryo-electron microscopy) structures of ISW1a (ΔATPase) bound to a nucleosome, and site-directed photo-cross-linking analyses in solution. The X-ray structure of ISW1a (ΔATPase) with DNA bound suggests that DNA sequence may be involved in nucleosome recognition and thereby specificity of promoter interaction. The model suggests how the highly ordered nucleosome arrays observed by mapping nucleosomes in genes and their promoter regions could be generated by a chromatin remodelling factor.  相似文献   

4.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

5.
6.
Yen K  Vinayachandran V  Batta K  Koerber RT  Pugh BF 《Cell》2012,149(7):1461-1473
How chromatin remodelers cooperate to organize nucleosomes around the start and end of genes is not known. We determined the genome-wide binding of remodeler complexes SWI/SNF, RSC, ISW1a, ISW1b, ISW2, and INO80 to individual nucleosomes in Saccharomyces, and determined their functional contributions to nucleosome positioning through deletion analysis. We applied ultra-high-resolution ChIP-exo mapping to Isw2 to determine its subnucleosomal orientation and organization on a genomic scale. Remodelers interacted with selected nucleosome positions relative to the start and end of genes and produced net directionality in moving nucleosomes either away or toward nucleosome-free regions at the 5' and 3' ends of genes. Isw2 possessed a subnucleosomal organization in accord with biochemical and crystallographic-based models that place its linker binding region within promoters and abutted against Reb1-bound locations. Together, these findings reveal a coordinated position-specific approach taken by remodelers to organize genic nucleosomes into arrays.  相似文献   

7.
8.
Chromatin assembly in a crude DEAE (CD) fraction from budding yeast is ATP dependent and generates arrays of physiologically spaced nucleosomes which significantly protect constituent DNA from restriction endonuclease digestion. The CD fractions from mutants harboring deletions of the genes encoding histone-binding factors (NAP1, ASF1, and a subunit of CAF-I) and SNF2-like DEAD/H ATPases (SNF2, ISW1, ISW2, CHD1, SWR1, YFR038w, and SPT20) were screened for activity in this replication-independent system. ASF1 deletion substantially inhibits assembly, a finding consistent with published evidence that Asf1p is a chromatin assembly factor. Surprisingly, a strong assembly defect is also associated with deletion of CHD1, suggesting that like other SNF2-related groups of nucleic acid-stimulated ATPases, the chromodomain (CHD) group may contain a member involved in chromatin reconstitution. In contrast to the effects of disrupting ASF1 and CHD1, deletion of SNF2 is associated with increased resistance of chromatin to digestion by micrococcal nuclease. We discuss the possible implications of these findings for current understanding of the diversity of mechanisms by which chromatin reconstitution and remodeling can be achieved in vivo.  相似文献   

9.
10.
The nucleosome remodeling activity of ISW1a was dependent on whether ISW1a was bound to one or both extranucleosomal DNAs. ISW1a preferentially bound nucleosomes with an optimal length of approximately 33 to 35 bp of extranucleosomal DNA at both the entry and exit sites over nucleosomes with extranucleosomal DNA at only one entry or exit site. Nucleosomes with extranucleosomal DNA at one of the entry/exit sites were readily remodeled by ISW1a and stimulated the ATPase activity of ISW1a, while conversely, nucleosomes with extranucleosomal DNA at both entry/exit sites were unable either to stimulate the ATPase activity of ISW1a or to be mobilized. DNA footprinting revealed that a major conformational difference between the nucleosomes was the lack of ISW1a binding to nucleosomal DNA two helical turns from the dyad axis in nucleosomes with extranucleosomal DNA at both entry/exit sites. The Ioc3 subunit of ISW1a was found to be the predominant subunit associated with extranucleosomal DNA when ISW1a is bound either to one or to both extranucleosomal DNAs. These two conformations of the ISW1a-nucleosome complex are suggested to be the molecular basis for the nucleosome spacing activity of ISW1a on nucleosomal arrays. ISW1b, the other isoform of ISW1, does not have the same dependency for extranucleosomal DNA as ISW1a and, likewise, is not able to space nucleosomes.  相似文献   

11.
12.
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.  相似文献   

13.
14.
15.
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce nucleosome sliding. In addition, ISWI can function as a nucleosome spacing factor during chromatin assembly, where it will trigger the ordering of newly assembled nucleosomes into regular arrays. Both nucleosome remodeling and nucleosome spacing reactions are mechanistically unexplained. As a step toward defining the interaction of ISWI with its substrate during nucleosome remodeling and chromatin assembly we generated a set of nucleosomes lacking individual histone N termini from recombinant histones. We found the conserved N termini (the N-terminal tails) of histone H4 essential to stimulate ISWI ATPase activity, in contrast to other histone tails. Remarkably, the H4 N terminus, but none of the other tails, was critical for CHRAC-induced nucleosome sliding and for the generation of regularity in nucleosomal arrays by ISWI. Direct nucleosome binding studies did not reflect a dependence on the H4 tail for ISWI-nucleosome interactions. We conclude that the H4 tail is critically required for nucleosome remodeling and spacing at a step subsequent to interaction with the substrate.  相似文献   

16.
ATP-dependent chromatin remodeling complexes are implicated in many areas of chromosome biology. However, the physiological role of many of these enzymes is still unclear. In budding yeast, the Isw2 complex slides nucleosomes along DNA. By analyzing the native chromatin structure of Isw2 targets, we have found that nucleosomes adopt default, DNA-directed positions when ISW2 is deleted. We provide evidence that Isw2 targets contain DNA sequences that are inhibitory to nucleosome formation and that these sequences facilitate the formation of nuclease-accessible open chromatin in the absence of Isw2. Our data show that the biological function of Isw2 is to position nucleosomes onto unfavorable DNA. These results reveal that antagonistic forces of Isw2 and the DNA sequence can control nucleosome positioning and genomic access in vivo.  相似文献   

17.
We have confirmed the result that chicken beta-globin gene chromatin, which possesses the characteristics of active chromatin in erythroid cells, has shortened internucleosome spacings compared with bulk chromatin or that of the ovalbumin gene, which is inactive. To understand how the short (approximately 180-bp) nucleosome repeat arises specifically on beta-globin DNA, we have studied chromatin assembly of cloned chicken beta-globin DNA in a defined in vitro system. With chicken erythrocyte core histones and linker histone H5 as the only cellular components, a cloned 6.2-kb chicken beta-globin DNA fragment assembled into chromatin possessing a regular 180 +/- 5-bp repeat, very similar to what is observed in erythroid cells. A 2-kb DNA subfragment containing the beta A gene and promoter region, but lacking the downstream intergenic region between the beta A and epsilon genes, failed to generate a regular nucleosome array in vitro, suggesting that the intergenic region facilitates linker histone-induced nucleosome alignment. When the beta A gene was placed on a plasmid that contained a known chromatin-organizing signal, nucleosome alignment with a 180-bp periodicity was restored, whereas nucleosomes on flanking plasmid sequences possessed a 210-bp spacing periodicity. Our results suggest that the shortened 180-bp nucleosome spacing periodicity observed in erythroid cells is encoded in the beta-globin DNA sequence and that nucleosome alignment by linker histones is facilitated by sequences in the beta A-epsilon intergenic region.  相似文献   

18.
19.
We have analysed by micrococcus nuclease digestion the chromatin structure of genes in the Balbiani ring (BR) regions of a Chironomus cell line. Gel electrophoresis of the DNA fragments reveals a repeating structure which consists of two repeat sizes, a long repeat seen in the large fragments and a small repeat seen in the small fragments. The two repeats hardly overlap, except in a narrow transition zone which is at a different fragment size in the BR 2.2 and the BR 2.1 gene. The sizes of the large repeats fit the repeat of the underlying DNA sequence. The short repeats are between 170 and 180 bp, and after H1 depletion the short repeat in the BR 2.2 gene is 160 bp. Our most favoured interpretation of these data is that in intact chromatin the nucleosomes in the BR genes are phased with respect to the repeating DNA sequence, whereas micrococcus nuclease digestion leads to loss of a nucleosome-positioning constraint and hence to rearrangement of the nucleosomes. Our results imply a possible artefact of nuclease digestion of chromatin, which has to be taken into account in mapping nucleosome positions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号