首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The interdependence of the concept of allostery and enzymatic catalysis, and they being guided by conformational mobility is gaining increased prominence. However, to gain a molecular level understanding of allostery and hence of enzymatic catalysis, it is of utter importance that the networks of amino acids participating in allostery be deciphered. Our lab has been exploring the methods of network analysis combined with molecular dynamics simulations to understand allostery at molecular level. Earlier we had outlined methods to obtain communication paths and then to map the rigid/flexible regions of proteins through network parameters like the shortest correlated paths, cliques, and communities. In this article, we advance the methodology to estimate the conformational populations in terms of cliques/communities formed by interactions including the side‐chains and then to compute the ligand‐induced population shift. Finally, we obtain the free‐energy landscape of the protein in equilibrium, characterizing the free‐energy minima accessed by the protein complexes. We have chosen human tryptophanyl‐tRNA synthetase (hTrpRS), a protein responsible for charging tryptophan to its cognate tRNA during protein biosynthesis for this investigation. This is a multidomain protein exhibiting excellent allosteric communication. Our approach has provided valuable structural as well as functional insights into the protein. The methodology adopted here is highly generalized to illuminate the linkage between protein structure networks and conformational mobility involved in the allosteric mechanism in any protein with known structure. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
We review the role conformational ensembles can play in the analysis of biomolecular dynamics, molecular recognition, and allostery. We introduce currently available methods for generating ensembles of biomolecules and illustrate their application with relevant examples from the literature. We show how, for binding, conformational ensembles provide a way of distinguishing the competing models of induced fit and conformational selection. For allostery we review the classic models and show how conformational ensembles can play a role in unravelling the intricate pathways of communication that enable allostery to occur. Finally, we discuss the limitations of conformational ensembles and highlight some potential applications for the future.  相似文献   

4.
It is now well-known that proteins exist at equilibrium as ensembles of conformational states rather than as unique static structures. Here we review from an ensemble perspective important biological effects of such spontaneous fluctuations on protein allostery, function, and evolution. However, rather than present a thorough literature review on each subject, we focus instead on connecting these phenomena through the ensemble-based experimental, theoretical, and computational investigations from our laboratory over the past decade. Special emphasis is given to insights that run counter to some of the prevailing ideas that have emerged over the past 40 years of structural biology research. For instance, when proteins are viewed as conformational ensembles rather than as single structures, the commonly held notion of an allosteric pathway as an obligate series of individual structural distortions loses its meaning. Instead, allostery can result from energetic linkage between distal sites as one Boltzmann distribution of states transitions to another. Additionally, the emerging principles from this ensemble view of proteins have proven surprisingly useful in describing the role of intrinsic disorder in inter-domain communication, functional adaptation mediated by mutational control of fluctuations, and evolutionary conservation of the energetics of protein stability.  相似文献   

5.
The contribution of heterotropic effectors to hemoglobin allostery is still not completely understood. With the recently proposed global allostery model, this question acquires crucial significance, because it relates tertiary conformational changes to effector binding in both the R- and T-states. In this context, an important question is how far the induced conformational changes propagate from the binding site(s) of the allosteric effectors. We present a study in which we monitored the interdimeric interface when the effectors such as Cl-, 2,3-diphosphoglycerate, inositol hexaphosphate, and bezafibrate were bound. We studied oxy-Hb and a hybrid form (alphaFeO2)2-(betaZn)2 as the T-state analogue by monitoring heme absorption and Trp intrinsic fluorescence under hydrostatic pressure. We observed a pressure-dependent change in the intrinsic fluorescence, which we attribute to a pressure-induced tetramer to dimer transition with characteristic pressures in the 70-200-megapascal range. The transition is sensitive to the binding of allosteric effectors. We fitted the data with a simple model for the tetramer-dimer transition and determined the dissociation constants at atmospheric pressure. In the R-state, we observed a stabilizing effect by the allosteric effectors, although in the T-analogue a stronger destabilizing effect was seen. The order of efficiency was the same in both states, but with the opposite trend as inositol hexaphosphate > 2,3-diphosphoglycerate > Cl-. We detected intrinsic fluorescence from bound bezafibrate that introduced uncertainty in the comparison with other effectors. The results support the global allostery model by showing that conformational changes propagate from the effector binding site to the interdimeric interfaces in both quaternary states.  相似文献   

6.
The role of conformational dynamics in allosteric signaling of proteins is increasingly recognized as an important and subtle aspect of this ubiquitous phenomenon. Cooperative binding is commonly observed in proteins with twofold symmetry that bind two identical ligands. We construct a coarse-grained model of an allosteric coupled dimer and show how the signal can be propagated between the distant binding sites via change in slow global vibrational modes alone. We demonstrate that modulation on substrate binding of as few as 5-10 slow modes can give rise to cooperativity observed in biological systems and that the type of cooperativity is given by change of interaction between the two monomers upon ligand binding. To illustrate the application of the model, we apply it to a challenging test case: the catabolite activator protein (CAP). CAP displays negative cooperativity upon association with two identical ligands. The conformation of CAP is not affected by the binding, but its vibrational spectrum undergoes a strong modification. Intriguingly, the first binding enhances thermal fluctuations, yet the second quenches them. We show that this counterintuitive behavior is, in fact, necessary for an optimal anticooperative system, and captured within a well-defined region of the model's parameter space. From analyzing the experimental results, we conclude that fast local modes take an active part in the allostery of CAP, coupled to the more-global slow modes. By including them into the model, we elucidate the role of the modes on different timescales. We conclude that such dynamic control of allostery in homodimers may be a general phenomenon and that our model framework can be used for extended interpretation of thermodynamic parameters in other systems.  相似文献   

7.
Ma CW  Xiu ZL  Zeng AP 《PloS one》2011,6(10):e26453
Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term "protein dynamical modules" based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine.  相似文献   

8.
9.
p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)‐binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the “activating” C‐terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked‐immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild‐type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the “unfolded” conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.  相似文献   

10.
Understanding molecular principles underlying Hsp90 chaperone functions and modulation of client activity is fundamental to dissect activation mechanisms of many proteins. In this work, we performed a computational investigation of the Hsp90-Hsp70-Hop-CR client complex to examine allosteric regulatory mechanisms underlying dynamic chaperone interactions and principles of chaperone-dependent client recognition and remodeling. Conformational dynamics analysis using high-resolution coarse-grained simulations and ensemble-based local frustration analysis suggest that the Hsp90 chaperone could recognize and recruit the GR client by invoking reciprocal dynamic exchanges near the intermolecular interfaces with the client. Using mutational scanning of the intermolecular residues in the Hsp90-Hsp70-Hop-GR complex, we identified binding energy hotspots in the regulatory complex. Perturbation-based network analysis and dynamic fluctuations-based modeling of allosteric residue potentials are employed for a detailed analysis of allosteric interaction networks and identification of conformational communication switches. We found that allosteric interactions between the Hsp90, the client-bound Hsp70 and Hop cochaperone can define two allosteric residue clusters that control client recruitment in which the intrinsic Hsp70 allostery is exploited to mediate integration of the Hsp70-bound client into the Hsp90 chaperone system. The results suggest a model of dynamics-driven allostery that enables efficient client recruitment and loading through allosteric couplings between intermolecular interfaces and communication switch centers. This study showed that the Hsp90 interactions with client proteins may operate under dynamic-based allostery in which ensembles of preexisting conformational states and intrinsic allosteric pathways present in the Hsp90 and Hsp70 chaperones can be exploited for recognition and integration of substrate proteins.  相似文献   

11.
12.
Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring.  相似文献   

13.
Folding and binding cascades: dynamic landscapes and population shifts   总被引:11,自引:0,他引:11       下载免费PDF全文
Whereas previously we have successfully utilized the folding funnels concept to rationalize binding mechanisms (Ma B, Kumar S, Tsai CJ, Nussinov R, 1999, Protein Eng 12:713-720) and to describe binding (Tsai CJ, Kumar S, Ma B, Nussinov R, 1999, Protein Sci 8:1181-1190), here we further extend the concept of folding funnels, illustrating its utility in explaining enzyme pathways, multimolecular associations, and allostery. This extension is based on the recognition that funnels are not stationary; rather, they are dynamic, depending on the physical or binding conditions (Tsai CJ, Ma B, Nussinov R, 1999, Proc Natl Acad Sci USA 96:9970-9972). Different binding states change the surrounding environment of proteins. The changed environment is in turn expressed in shifted energy landscapes, with different shapes and distributions of populations of conformers. Hence, the function of a protein and its properties are not only decided by the static folded three-dimensional structure; they are determined by the distribution of its conformational substates, and in particular, by the redistributions of the populations under different environments. That is, protein function derives from its dynamic energy landscape, caused by changes in its surroundings.  相似文献   

14.
Gunasekaran K  Ma B  Nussinov R 《Proteins》2004,57(3):433-443
Allostery involves coupling of conformational changes between two widely separated binding sites. The common view holds that allosteric proteins are symmetric oligomers, with each subunit existing in "at least" two conformational states with a different affinity for ligands. Recent observations such as the allosteric behavior of myoglobin, a classical example of a nonallosteric protein, call into question the existing allosteric dogma. Here we argue that all (nonfibrous) proteins are potentially allosteric. Allostery is a consequence of re-distributions of protein conformational ensembles. In a nonallosteric protein, the binding site shape may not show a concerted second-site change and enzyme kinetics may not reflect an allosteric transition. Nevertheless, appropriate ligands, point mutations, or external conditions may facilitate a population shift, leading a presumably nonallosteric protein to behave allosterically. In principle, practically any potential drug binding to the protein surface can alter the conformational redistribution. The question is its effectiveness in the redistribution of the ensemble, affecting the protein binding sites and its function. Here, we review experimental observations validating this view of protein allostery.  相似文献   

15.
Photoactive yellow protein (PYP) is a small bacterial photoreceptor that undergoes a light-activated reaction cycle. PYP is also the prototypical Per-Arnt-Sim (PAS) domain. PAS domains, found in diverse multi-domain proteins from bacteria to humans, mediate protein-protein interactions and function as sensors and signal transducers. Here, we investigate conformational and dynamic changes in solution in wild-type PYP upon formation of the long-lived putative signaling intermediate I2 with enhanced hydrogen/deuterium exchange mass spectrometry (DXMS). The DXMS results showed that the central beta-sheet remains stable but specific external protein segments become strongly deprotected. Light-induced disruption of the dark-state hydrogen bonding network in I2 produces increased flexibility and opening of PAS core helices alpha3 and alpha4, releases the beta4-beta5 hairpin, and propagates conformational changes to the central beta-sheet. Surprisingly, the first approximately 10 N-terminal residues, which are essential for fast dark-state recovery from I2, become more protected. By combining the DXMS results with our crystallographic structures, which reveal detailed changes near the chromophore but limited protein conformational change, we propose a mechanism for I2 state formation. This mechanism integrates the results from diverse biophysical studies of PYP, and links an allosteric T to R-state conformational transition to three pathways for signal propagation within the PYP fold. On the basis of the observed changes in PYP plus commonalities shared among PAS domain proteins, we further propose that PAS domains share this conformational mechanism, which explains the versatile signal transduction properties of the structurally conserved PYP/PAS module by framework-encoded allostery.  相似文献   

16.
Daily MD  Gray JJ 《Proteins》2007,67(2):385-399
Allosteric proteins have been studied extensively in the last 40 years, but so far, no systematic analysis of conformational changes between allosteric structures has been carried out. Here, we compile a set of 51 pairs of known inactive and active allosteric protein structures from the Protein Data Bank. We calculate local conformational differences between the two structures of each protein using simple metrics, such as backbone and side-chain Cartesian displacement, and torsion angle change and rearrangement in residue-residue contacts. Thresholds for each metric arise from distributions of motions in two control sets of pairs of protein structures in the same biochemical state. Statistical analysis of motions in allosteric proteins quantifies the magnitude of allosteric effects and reveals simple structural principles about allostery. For example, allosteric proteins exhibit substantial conformational changes comprising about 20% of the residues. In addition, motions in allosteric proteins show strong bias toward weakly constrained regions such as loops and the protein surface. Correlation functions show that motions communicate through protein structures over distances averaging 10-20 residues in sequence space and 10-20 A in Cartesian space. Comparison of motions in the allosteric set and a set of 21 nonallosteric ligand-binding proteins shows that nonallosteric proteins also exhibit bias of motion toward weakly constrained regions and local correlation of motion. However, allosteric proteins exhibit twice as much percent motion on average as nonallosteric proteins with ligand-induced motion. These observations may guide efforts to design flexibility and allostery into proteins.  相似文献   

17.

Background

Regulation of proteins is ubiquitous and vital for any organism. Protein activity can be altered chemically, by covalent modifications or non-covalent binding of co-factors. Mechanical forces are emerging as an additional way of regulating proteins, by inducing a conformational change or by partial unfolding.

Scope

We review some advances in experimental and theoretical techniques to study protein allostery driven by mechanical forces, as opposed to the more conventional ligand driven allostery. In this respect, we discuss recent single molecule pulling experiments as they have substantially augmented our view on the protein allostery by mechanical signals in recent years. Finally, we present a computational analysis technique, Force Distribution Analysis, that we developed to reveal allosteric pathways in proteins.

Major conclusions

Any kind of external perturbation, being it ligand binding or mechanical stretching, can be viewed as an external force acting on the macromolecule, rendering force-based experimental or computational techniques, a very general approach to the mechanics involved in protein allostery.

General significance

This unifying view might aid to decipher how complex allosteric protein machineries are regulated on the single molecular level.  相似文献   

18.
The relationship between functional conformation changes and thermal dynamics of proteins is investigated with the help of the torsional network model (TNM), an elastic network model in torsion angle space that we recently introduced. We propose and test a null-model of “random” conformation changes that assumes that the contributions of normal modes to conformation changes are proportional to their contributions to thermal fluctuations. Deviations from this null model are generally small. When they are large and significant, they consist in conformation changes that are represented by very few low frequency normal modes and overcome small energy barriers. We interpret these features as the result of natural selection favoring the intrinsic protein dynamics consistent with functional conformation changes. These “selected” conformation changes are more frequently associated to ligand binding, and in particular phosphorylation, than to pairs of conformations with the same ligands. This deep relationship between the thermal dynamics of a protein, represented by its normal modes, and its functional dynamics can reconcile in a unique framework the two models of conformation changes, conformational selection and induced fit. The program TNM that computes torsional normal modes and analyzes conformation changes is available upon request. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

19.
Recent advances in heme-protein sensors   总被引:1,自引:0,他引:1  
In recent years, an increasing number of proteins have been discovered which utilize heme cofactors to sense oxygen, carbon monoxide and nitric oxide. The identification and characterization of these proteins are revising our understanding of heme-mediated allostery first established in the early 1960s. Biochemical and structural studies are revealing new mechanisms for heme-driven conformational changes distinct from the classical hemoglobin model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号