首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although structures of single-stranded (ss)DNA-binding proteins (SSBs) have been reported with and without ssDNA, the mechanism of ssDNA binding in eukarya remains speculative. Here we report a 2.5 Angstroms structure of the ssDNA-binding domain of human replication protein A (RPA) (eukaryotic SSB), for which we previously reported a structure in complex with ssDNA. A comparison of free and bound forms of RPA revealed that ssDNA binding is associated with a major reorientation between, and significant conformational changes within, the structural modules--OB-folds--which comprise the DNA-binding domain. Two OB-folds, whose tandem orientation was stabilized by the presence of DNA, adopted multiple orientations in its absence. Within the OB-folds, extended loops implicated in DNA binding significantly changed conformation in the absence of DNA. Analysis of intermolecular contacts suggested the possibility that other RPA molecules and/or other proteins could compete with DNA for the same binding site. Using this mechanism, protein-protein interactions can regulate, and/or be regulated by DNA binding. Combined with available biochemical data, this structure also suggested a dynamic model for the DNA-binding mechanism.  相似文献   

3.
Nucleocytoplasmic transport occurs through the nuclear pore complex (NPC), which in yeast is a ~50 MDa complex consisting of ~30 different proteins. Small molecules can freely exchange through the NPC, but macromolecules larger than ~40 kDa must be aided across by transport factors, most of which belong to a related family of proteins termed karyopherins (Kaps). These transport factors bind to the disordered phenylalanine-glycine (FG) repeat domains in a family of NPC proteins termed FG nups, and this specific binding allows the transport factors to cross the NPC. However, we still know little in terms of the molecular and kinetic details regarding how this binding translates to selective passage of transport factors across the NPC. Here we show that the specific interactions between Kaps and FG nups are strongly modulated by the presence of a cellular milieu whose proteins appear to act as very weak competitors that nevertheless collectively can reduce Kap/FG nup affinities by several orders of magnitude. Without such modulation, the avidities between Kaps and FG nups measured in vitro are too tight to be compatible with the rapid transport kinetics observed in vivo. We modeled the multivalent interactions between the disordered repeat binding sites in the FG nups and multiple cognate binding sites on Kap, showing that they should indeed be sensitive to even weakly binding competitors; the introduction of such competition reduces the availability of these binding sites, dramatically lowering the avidity of their specific interactions and allowing rapid nuclear transport.  相似文献   

4.
NHP6A is a non-sequence-specific DNA-binding protein from Saccharomyces cerevisiae which belongs to the HMGB protein family. Previously, we have solved the structure of NHP6A in the absence of DNA and modeled its interaction with DNA. Here, we present the refined solution structures of the NHP6A-DNA complex as well as the free 15bp DNA. Both the free and bound forms of the protein adopt the typical L-shaped HMGB domain fold. The DNA in the complex undergoes significant structural rearrangement from its free form while the protein shows smaller but significant conformational changes in the complex. Structural and mutational analysis as well as comparison of the complex with the free DNA provides insight into the factors that contribute to binding site selection and DNA deformations in the complex. Further insight into the amino acid determinants of DNA binding by HMGB domain proteins is given by a correlation study of NHP6A and 32 other HMGB domains belonging to both the DNA-sequence-specific and non-sequence-specific families of HMGB proteins. The resulting correlations can be rationalized by comparison of solved structures of HMGB proteins.  相似文献   

5.
XLF, also known as Cernunnos, is a newly identified core factor of the non-homologous end-joining (NHEJ) pathway for DNA double-strand breaks (DSBs) repair. XLF is known to stimulate DNA ligase IV in vitro through its interaction with XRCC4. Here, we outline the key findings on the dynamic behavior of XLF and XRCC4 at DSBs in living cells. XLF is quickly recruited to DSBs in the absence of XRCC4 or DNA-PKcs. The recruited XLF molecules constantly exchange at DSBs, and XRCC4 modulates the exchange rate of the recruited XLF. XRCC4 can be recruited to DSBs without DNA-PKcs, but DNA-PKcs stabilizes the recruited XRCC4. These observations are inconsistent with the prevailing concept that NHEJ proteins are sequentially recruited to DSBs, which is mainly supported by in vitro evidence. We propose a novel two-phase model for the assembly of NHEJ factors to DSBs in vivo. XLF, XRCC4, and DNA-PKcs are independently recruited to Ku-bound DSBs. The recruited factors are assembled into a large complex, in which the protein interactions observed in vitro define the stability of the recruited factors. This new view has broad implications for the mechanism of DSB sensing and functional protein assembly in the NHEJ pathway.  相似文献   

6.
Microtubules (MTs) composed of αβ-tubulin heterodimers are highly dynamic polymers, whose stability can be regulated by numerous endogenous and exogenous factors. Both the antimitotic drug Taxol and microtubule-associated proteins (MAPs) stabilize this dynamicity by binding to and altering the conformation of MTs. In the current study, amide hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) was used to examine the structural and dynamic properties of the MT complex with the microtubule binding domain of MAP4 (MTB-MAP4) in the presence and absence of Taxol. The changes in the HDX levels indicate that MTB-MAP4 may bind to both the outside and the luminal surfaces of the MTs and that Taxol reduces both of these interactions. The MTB-MAP4 binding induces conformational rearrangements of α- and β-tubulin that promote an overall stabilization of MTs. Paradoxically, despite Taxol's negative effects on MAP4 interactions with the MTs, its binding to the MTB-MAP4-MT complex further reduces the overall deuterium incorporation, suggesting that a more stable complex is formed in the presence of the drug.  相似文献   

7.
The complexity of mammalian origins of DNA replication has prevented, so far, the in vitro studies of the modalities of initiator protein binding and origin selection. We approached this problem by utilizing the human lamin B2 origin, wherein the precise start sites of replication initiation have been identified and known to be bound in vivo by the origin recognition complex (ORC). In order to analyze the in vitro interactions occurring at this origin, we have compared the DNA binding requirements and patterns of the human recombinant Orc4 with those of preparations of HeLa nuclear proteins containing the ORC complex. Here we show that both HsOrc4 alone and HeLa nuclear proteins recognize multiple sites within a 241-bp DNA sequence encompassing the lamin B2 origin. The DNA binding activity of HeLa cells requires the presence of ORC and can be reproduced in the absence of all the other proteins known to be recruited to origins by ORC. Both HsOrc4 alone and HeLa nuclear proteins exhibit cooperative and ATP-independent binding. This binding covers nucleotides 3853-3953 and then spreads outward. Because this region contains the start sites of DNA synthesis as well as the area protected in vivo and preserves protein binding capacity in vitro after removal of a fraction of the protected region, we suggest that it could contain the primary binding site. Thus the in vitro approach points to the sequence requirements for ORC binding as a key element for origin recognition.  相似文献   

8.
Methods probing protein–DNA associations include direct binding titrations and competition binding experiments. For the latter, we present here a simple procedure allowing the quantitative evaluation of dissociation constants. We show that the ratio between the fraction of a DNA probe bound to protein in the absence of competitor and that in the presence of competitor is, at large competitor concentrations, a linear function of the competitor concentration, and we derive equations allowing the dissociation constant for the protein–competitor complex to be evaluated from the slope. We show further that a self-competition experiment, where the DNA probe and competitor are chemically the same species, can be used as a complement to a direct titration to determine the fraction of protein that is correctly folded for specific DNA binding. Thus, such a combination of direct and self-competition titration can be used as a check of the conformational purity of DNA binding proteins.  相似文献   

9.
Microsomes from rat ventral prostate show the presence of a high affinity-low capacity population of androgen-binding sites with affinity for ionic exchange resin similar to that of cytosol androgen receptor (AR), as manifested by similar results obtained with hydroxylapatite. The affinity for mibolerone was similar for both forms (Ka = 0.5-2.9 x 10(10) M-1). The membrane-bound form can be extracted in hypotonic buffer, with retention of binding properties. Isotonic sucrose allowed higher degree of extractability of the microsomal AR than 10% (v/v) glycerol. The presence of hormone lends stability to the microsomal AR, while high salt or nonionic detergents have a deleterious effect on their longevity. The microsomal receptor form is not sensitive to serine-proteases as opposed to the cytosol AR. After exhaustive extraction of binding sites, microsomes are capable of accepting cytosol mibolerone-receptor complexes to a level corresponding to the concentration of depleted binding sites; microsomes from non-target tissue do not manifest such capability. Microsomal AR complexes do not bind DNA and they are not activated after heat treatment. Mixed preparations of extracted microsomal complexes with cytosol complexes showed heat-induced increased ability to bind DNA to the same level of diluted cytosol complex alone, indicating the absence of a microsomal inhibitor of DNA binding. The results indicate the co-existence of a non-DNA binding form of the AR in the microsomal membranes with the classical DNA binding form of the AR present in the cytosol of ventral prostate homogenates.  相似文献   

10.
A method called "South Western blot mapping" for rapid characterization of both DNA binding proteins and their specific sites on genomic DNA is described. Proteins are separated on a sodium dodecyl sulfate (SDS) polyacrylamide gel, renatured by removing SDS in the presence of urea, and blotted onto nitrocellulose by diffusion. The genomic DNA region of interest is digested by restriction enzymes selected to produce fragments of appropriate but different sizes, which are subsequently end-labeled and allowed to bind to the separated proteins. The specifically bound DNA is eluted from each individual protein-DNA complex and analyzed by acrylamide gel electrophoresis. Evidence that tissue-specific DNA binding proteins may be detected by this technique is presented. Moreover, their sequence-specific binding allows the purification of the corresponding selectively bound DNA fragments and may improve protein-mediated cloning of DNA regulatory sequences.  相似文献   

11.
Various helicases and single-stranded DNA (ssDNA) binding proteins are known to destabilize G-quadruplex (GQ) structures, which otherwise result in genomic instability. Bulk biochemical studies have shown that Bloom helicase (BLM) unfolds both intermolecular and intramolecular GQ in the presence of ATP. Using single molecule FRET, we show that binding of RecQ-core of BLM (will be referred to as BLM) to ssDNA in the vicinity of an intramolecular GQ leads to destabilization and unfolding of the GQ in the absence of ATP. We show that the efficiency of BLM-mediated GQ unfolding correlates with the binding stability of BLM to ssDNA overhang, as modulated by the nucleotide state, ionic conditions, overhang length and overhang directionality. In particular, we observed enhanced GQ unfolding by BLM in the presence of non-hydrolysable ATP analogs, which has implications for the underlying mechanism. We also show that increasing GQ stability, via shorter loops or higher ionic strength, reduces BLM-mediated GQ unfolding. Finally, we show that while WRN has similar activity as BLM, RecQ and RECQ5 helicases do not unfold GQ in the absence of ATP at physiological ionic strength. In summary, our study points to a novel and potentially very common mechanism of GQ destabilization mediated by proteins binding to the vicinity of these structures.  相似文献   

12.
13.
T Sedman  J Sedman    A Stenlund 《Journal of virology》1997,71(4):2887-2896
DNA replication of bovine papillomavirus (BPV) requires two viral proteins encoded from the E1 and E2 open reading frames. E1 and E2 are sequence-specific DNA binding proteins that bind to their cognate binding sites in the BPV origin of replication (ori). The E1 and E2 proteins can interact physically with each other, and this interaction results in cooperative binding when binding sites for both proteins are present. We have analyzed the binding of E1 to the ori in the absence and presence of E2, using DNase I footprint analysis, gel mobility shift assays, and interference analysis. We have also generated a large number of point mutations in the E1 binding site and tested them for binding of E1 as well as for activity in DNA replication. Our results demonstrate that E1 binds to the ori in different forms in the absence and presence of E2 and that E2 has both a quantitative and a qualitative effect on the binding of E1. Our results also suggest that the ori contains multiple overlapping individual E1 recognition sequences which together constitute the E1 binding site and that different subsets of these recognition sequences are used for binding of E1 in the presence and absence of E2.  相似文献   

14.
B F Cooper  H J Fromm  F B Rudolph 《Biochemistry》1986,25(23):7323-7327
The kinetic mechanism of rat muscle adenylosuccinate synthetase was studied by determining the rates of isotope exchange at equilibrium. A random sequential binding mechanism was indicated for both the forward and reverse reactions. Aspartate, adenylosuccinate, GDP, and Pi were determined to bind in rapid equilibrium. GTP exchanges with both GDP and Pi at the same rate, which is similar to the exchange rate of IMP with adenylosuccinate. Aspartate exchanges with adenylosuccinate at a higher rate than does IMP over the range of concentrations tested. The slower IMP and GTP exchange rates suggest a forward binding mechanism containing a preferred path in which the quaternary complex is most often formed by aspartate binding to the E-GTP-IMP complex. This preferred path is consistent with an interaction between IMP and GTP in the absence of aspartate as determined by isotope scrambling experiments [Bass, M. B., Fromm, H. J., & Rudolph, F. B. (1984) J. Biol. Chem. 259, 12330-12333]. However, the products of such an interaction are tightly bound to the enzyme as no partial exchange reactions between adenylosuccinate and aspartate in the presence or absence of Pi were detected.  相似文献   

15.
Both Proteins and DNA undergo conformational changes in order to form functional complexes and also to facilitate interactions with other molecules. These changes have direct implications for the stability and specificity of the complex, as well as the cooperativity of interactions between multiple entities. In this work, we have extensively analyzed conformational changes in DNA‐binding proteins by superimposing DNA‐bound and unbound pairs of protein structures in a curated database of 90 proteins. We manually examined each of these pairs, unified the authors' annotations, and summarized our observations by classifying conformational changes into six structural categories. We explored a relationship between conformational changes and functional classes, binding motifs, target specificity, biophysical features of unbound proteins, and stability of the complex. In addition, we have also investigated the degree to which the intrinsic flexibility can explain conformational changes in a subset of 52 proteins with high quality coordinate data. Our results indicate that conformational changes in DNA‐binding proteins contribute significantly to both the stability of the complex and the specificity of targets recognized by them. We also conclude that most conformational changes occur in proteins interacting with specific DNA targets, even though unbound protein structures may have sufficient information to interact with DNA in a nonspecific manner. Proteins 2014; 82:841–857. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The RecA protein requires ATP or dATP for its coprotease and strand exchange activities. Other natural nucleotides, such as ADP, CTP, GTP, UTP and TTP, have little or no activation effect on RecA for these activities. We have investigated the activation mechanism, and the selectivity for ATP, by studying the effect of various nucleotides on the DNA binding and the helical structure of the RecA filament. The interaction with DNA was investigated via fluorescence measurements with a fluorescent DNA analog and fluorescein-labeled oligonucleotides, assisted by linear dichroism. Filament structure was investigated via small-angle neutron scattering. There is no simple correlation between filament elongation, DNA binding affinity of RecA, and DNA structure in the RecA complex. There may be multiple conformations of RecA. Both coprotease and strand exchange activities require formation of a rigid and well organized complex. The triphosphate nucleotides which do not activate RecA, destabilize the RecA-DNA complex, indicating that the chemical nature of the nucleotide nucleobase is very important for the stability of RecA-DNA complex. Higher stability of the RecA-DNA complex in the presence of adenosine 5'-O-3-thiotriphosphate or guanosine 5'-O-3-thiotriphosphate than ATP or GTP indicates that contact between the protein and the chemical group at the gamma position of the nucleotide also affects the stability of the RecA-DNA complex. This contact appears also important for the rigid organization of DNA because ADP strongly decreases the rigidity of the complex.  相似文献   

17.
The concept of steric stabilization was utilized for self-assembling polyelectrolyte poly-L-lysine/DNA (pLL/DNA) complexes using covalent attachment of semitelechelic poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA). We have examined the effect of coating of the complexes with pHPMA on their physicochemical stability, phagocytic uptake in vitro, and biodistribution in vivo. The coated complexes showed stability against aggregation in 0.15 M NaCl and reduced binding of albumin, chosen as a model for the study of the interactions of the complexes with plasma proteins. The presence of coating pHPMA had no effect on the morphology of the complexes as shown by transmission electron microscopy. However, results of the study of polyelectrolyte exchange reactions with heparin and pLL suggested decreased stability of the coated complexes in these types of reactions compared to uncoated pLL/DNA complexes. Coated complexes showed decreased phagocytic capture by mouse peritoneal macrophages in vitro. Decreased phagocytosis in vitro, however, did not correlate with results of in vivo study in mice showing no reduction in the liver uptake and no increase in the circulation times in the blood. We propose that the rapid plasma elimination of coated pLL/DNA complexes is a result of binding serum proteins and also of their low stability toward polyelectrolyte exchange reactions as a consequence of their equilibrium nature.  相似文献   

18.
19.
We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity.  相似文献   

20.
Homologous recombination (HR) is an essential genome stability mechanism used for high-fidelity repair of DNA double-strand breaks and for the recovery of stalled or collapsed DNA replication forks. The crucial homology search and DNA strand exchange steps of HR are catalyzed by presynaptic filaments-helical filaments of a recombinase enzyme bound to single-stranded DNA (ssDNA). Presynaptic filaments are fundamentally dynamic structures, the assembly, catalytic turnover, and disassembly of which must be closely coordinated with other elements of the DNA recombination, repair, and replication machinery in order for genome maintenance functions to be effective. Here, we reviewed the major dynamic elements controlling the assembly, activity, and disassembly of presynaptic filaments; some intrinsic such as recombinase ATP-binding and hydrolytic activities, others extrinsic such as ssDNA-binding proteins, mediator proteins, and DNA motor proteins. We examined dynamic behavior on multiple levels, including atomic- and filament-level structural changes associated with ATP binding and hydrolysis as evidenced in crystal structures, as well as subunit binding and dissociation events driven by intrinsic and extrinsic factors. We examined the biochemical properties of recombination proteins from four model systems (T4 phage, Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens), demonstrating how their properties are tailored for the context-specific requirements in these diverse species. We proposed that the presynaptic filament has evolved to rely on multiple external factors for increased multilevel regulation of HR processes in genomes with greater structural and sequence complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号