首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs.  相似文献   

2.
3.
4.
Caspases orchestrate the controlled demise of a cell after an apoptotic signal through specific protease activity and cleavage of many substrates altering protein function and ensuring apoptosis proceeds efficiently. Comparing a variety of substrates of each apoptotic caspase (2, 3, 6, 7, 8, 9 and 10) showed that the cleavage sites had a general motif, sometimes specific for one caspase, but other times specific for several caspases. Using commercially available short peptide-based substrates and inhibitors the promiscuity for different cleavage motifs was indicated, with caspase-3 able to cleave most substrates more efficiently than those caspases to which the substrates are reportedly specific. In a cell-free system, immunodepletion of caspases before or after cytochrome c-dependent activation of the apoptosome indicated that the majority of activity on synthetic substrates was dependent on caspase-3, with minor roles played by caspases-6 and -7. Putative inhibitors of individual caspases were able to abolish all cytochrome c-induced caspase activity in a cell-free system and inhibit apoptosis in whole cells through the extrinsic and intrinsic pathways, raising issues regarding the use of such inhibitors to define relevant caspases and pathways. Finally, caspase activity in cells lacking caspase-9 displayed substrate cleavage activity of a putative caspase-9-specific substrate underlining the lack of selectivity of peptide-based substrates and inhibitors of caspases.  相似文献   

5.
Caspases, a unique family of cysteine proteases involved in cytokine activation and in the execution of apoptosis can be sub-grouped according to the length of their prodomain. Long prodomain caspases such as caspase-8 and caspase-9 are believed to act mainly as upstream caspases to cleave downstream short prodomain caspases such as caspases-3 and -7. We report here the identification of caspases as direct substrates of calcium-activated proteases, calpains. Calpains cleave caspase-7 at sites distinct from those of the upstream caspases, generating proteolytically inactive fragments. Caspase-8 and caspase-9 can also be directly cleaved by calpains. Two calpain cleavage sites in caspase-9 have been identified by N-terminal sequencing of the cleaved products. Cleavage of caspase-9 by calpain generates truncated caspase-9 that is unable to activate caspase-3 in cell lysates. Furthermore, direct cleavage of caspase-9 by calpain blocks dATP and cytochrome-c induced caspase-3 activation. Therefore our results suggest that calpains may act as negative regulators of caspase processing and apoptosis by effectively inactivating upstream caspases.  相似文献   

6.
Apoptosis plays a crucial role in development and tissue homeostasis. Some key survival pathways, such as DNA damage checkpoints and DNA repair, have been described to be inactivated during apoptosis. Here, we describe the processing of the human checkpoint protein Claspin during apoptosis. We observed cleavage of Claspin into multiple fragments in vivo. In vitro cleavage with caspases 3 and 7 of various fragments of the protein, revealed cut sites near the N- and C-termini of the protein. Using mass spectrometry, we identified a novel caspase cleavage site in Claspin at Asp25. Importantly, in addition to cleavage by caspases, we observed a proteasome-dependent degradation of Claspin under apoptotic conditions, resulting in a reduction of the levels of both full-length Claspin and its cleavage products. This degradation was not dependent upon the DSGxxS phosphodegron motif required for SCF(beta-TrCP)-mediated ubiquitination of Claspin. Finally, downregulation of Claspin protein levels by short interfering RNA resulted in an increase in apoptotic induction both in the presence and absence of DNA damage. We conclude that Claspin has antiapoptotic activity and is degraded by two different pathways during apoptosis. The resulting disappearance of Claspin from the cells further promotes apoptosis.  相似文献   

7.
Posttranslational modifications that involve either reversible covalent modification of proteins or irreversible proteolysis are central to the regulation of key cellular mechanisms, including apoptosis, cell-cycle regulation and signal transduction. There is mounting evidence suggesting cross-talk between proteases and kinases. For instance: caspases, a class of proteases involved in programmed cell death—apoptosis, cleave a large set of various types of proteins. Simultaneously, kinases restrict caspase activity by phosphorylating their protein substrates in the vicinity of cleavage site. In addition, the caspase cleavage pattern in target proteins may be modified as a result of single nucleotide polymorphisms (SNPs) in the coding gene. This may either create a novel cleavage site, or increase/decrease the cleavage efficiency of a substrate. Such point mutations are often associated with the onset of disease. In this study, we predicted how phosphorylation and SNPs affect known human caspase proteolytic events collected in the CASBAH and Degrabase databases by applying Random Forest caspases’ substrates prediction method, as implemented in the CaspDB, and the molecular dynamics free energy simulations approach. Our analysis confirms several experimental observations. Phosphorylation could have both positive or negative regulatory effects depending on its position with respect to the caspase cleavage site. For instance, we demonstrate that phosphorylation at P1′ is the most detrimental for proteolytic efficiency of caspases. Phosphorylation at the P2 and P2′ positions also negatively affect the cleavage events. In addition, we uncovered SNPs in 11 caspase substrates capable of completely abolishing the cleavage site due to polymorphism at the P1 position. The findings presented here may be useful for determining the link between aberrant proteolysis and disease.  相似文献   

8.
Caspases are key mediators of apoptosis. Using a novel expression cloning strategy we recently developed to identify cDNAs encoding caspase substrates, we isolated the intermediate filament protein vimentin as a caspase substrate. Vimentin is preferentially cleaved by multiple caspases at distinct sites in vitro, including Asp85 by caspases-3 and -7 and Asp259 by caspase-6, to yield multiple proteolytic fragments. Vimentin is rapidly proteolyzed by multiple caspases into similar sized fragments during apoptosis induced by many stimuli. Caspase cleavage of vimentin disrupts its cytoplasmic network of intermediate filaments and coincides temporally with nuclear fragmentation. Moreover, caspase proteolysis of vimentin at Asp85 generates a pro-apoptotic amino-terminal fragment whose ability to induce apoptosis is dependent on caspases. Taken together, our findings suggest that caspase proteolysis of vimentin promotes apoptosis by dismantling intermediate filaments and by amplifying the cell death signal via a pro-apoptotic cleavage product.  相似文献   

9.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.  相似文献   

10.
11.
Caspase的活化及其在细胞凋亡中的作用   总被引:23,自引:0,他引:23  
Caspase是执行细胞凋亡的主要酶类,目前已鉴定的哺乳动物Caspase有14种。Caspase以酶原的形式合成,催化活性很低,必须激活以后才能发挥作用。活化的Caspase通过特异性的裂解一套底物而导致细胞凋亡。与Caspase有关的细胞凋亡通路至少有三种:线粒体/细胞色素c通路、死亡受体通路和内质网通路。Caspase总是与其抑制剂共存,以防止Caspase酶原意外激活而对正常细胞造成损伤。  相似文献   

12.
Activated caspases play a central role in the execution of apoptosis by cleaving endogenous substrates. Here, we developed a high throughput screening method to identify novel substrates for caspase-3 in a neuronal cell line. Critical steps in our strategy consist of two-dimensional electrophoresis-based protein separation and in vitro caspase-3 incubation of immobilized proteins to sort out direct substrates. Among 46 putative substrates identified in MN9D neuronal cells, we further evaluated whether caspase-3-mediated cleavage of anamorsin, a recently recognized cell death-defying factor in hematopoiesis, is a general feature of apoptosis. In vitro and cell-based cleavage assays indicated that anamorsin was specifically cleaved by caspase-3 but not by other caspases, generating 25- and 10-kDa fragments. Thus, in apoptosis of neuronal and non-neuronal cells induced by various stimuli including staurosporine, etoposide, or 6-hydroxydopamine, the cleavage of anamorsin was found to be blocked in the presence of caspase inhibitor. Among four tetrapeptide consensus DXXD motifs existing in anamorsin, we mapped a specific cleavage site for caspase-3 at DSVD209↓L. Intriguingly, the 25-kDa cleaved fragment of anamorsin was also detected in post-mortem brains of Alzheimer and Parkinson disease patients. Although the RNA interference-mediated knockdown of anamorsin rendered neuronal cells more vulnerable to staurosporine treatment, reintroduction of full-length anamorsin into an anamorsin knock-out stromal cell line made cells resistant to staurosporine-induced caspase activation, indicating the antiapoptotic function of anamorsin. Taken together, our approach seems to be effective to identify novel substrates for caspases and has the potential to provide meaningful insights into newly identified substrates involved in neurodegenerative processes.  相似文献   

13.
Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis. [BMB Reports 2013; 46(12): 588-593]  相似文献   

14.
Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.  相似文献   

15.
The protease granzyme B (GrB) plays a key role in the cytocidal activity during cytotoxic T lymphocyte (CTL)-mediated programmed cell death. Multiple caspases have been identified as direct substrates for GrB, suggesting that the activation of caspases constitutes an important event during CTL-induced cell death. However, recent studies have provided evidence for caspase-independent pathway(s) during CTL-mediated apoptosis. In this study, we demonstrate caspase-independent and direct cleavage of the 45 kDa unit of DNA fragmentation factor (DFF45) by GrB both in vitro and in vivo. Using a novel and selective caspase-3 inhibitor, we show the ability of GrB to process DFF45 directly and mediate DNA fragmentation in the absence of caspase-3 activity. Furthermore, studies with DFF45 mutants reveal that both caspase-3 and GrB share a common cleavage site, which is necessary and sufficient to induce DNA fragmentation in target cells during apoptosis. Together, our data suggest that CTLs possess alternative mechanism(s) for inducing DNA fragmentation without the requirement for caspases.  相似文献   

16.
Caspase activation and proteolytic cleavage of specific target proteins represents an integral step in the pathway leading to the apoptotic death of cells. Analysis of caspase activity in intact cells, however, has been generally limited to the measurement of end-point biochemical and morphological markers of apoptosis. In an effort to develop a strategy with which to monitor caspase activity, early in the cell death cascade and in real-time, we have generated cell lines that overexpress recombinant GFP-based caspase substrates that display a quantifiable change in their spectral properties when cleaved by group II caspases. Specifically, tandem GFP substrates linked by a caspase-sensitive cleavage site show diminished fluorescence resonance energy transfer (FRET), as a consequence of cleavage, due to physical separation of the GFP moieties in apoptotic cells. We have evaluated the influence of different caspase-sensitive linkers on both FRET efficiency and cleavage by caspase-3. We also demonstrate that caspase activity as well as inhibition by pharmacological agents can be monitored, with minimal manipulation, in intact adherent cells seeded in a 96-well cell culture dish. Finally, we have adapted this technology to a high throughput screening platform to identify novel small molecule and cell permeable inhibitors of apoptosis. Based on a biochemical analysis of the compounds identified it is clear that this assay can be used to detect drugs which inhibit caspases directly as well as those which target upstream components of the caspase cascade.  相似文献   

17.
Caspases are essential proteases in programmed cell death and inflammation. Studies in murine and human cells have led to the characterization of 14 members of this enzyme family. Here we report the identification of caspase-15, a novel caspase that is expressed in various mammalian species including pig, dog, and cattle. The caspase-15 protein contains a catalytic domain with all amino acid residues critical for caspase activity and a prodomain that is predicted to fold into a pyrin domain structure, which is a unique feature among mammalian caspases. Recombinant porcine caspase-15 underwent autocatalytic processing into its subunits and cleaved both tetrapeptide caspase substrates and the apoptosis regulator protein Bid in vitro. Overexpression of caspase-15 in mammalian cells induced proenzyme maturation, cleavage of Bid, activation of caspase-3, and eventually cell death. Both the proteolytic and the pro-apoptotic activity of caspase-15 were abolished by mutation of the active site cysteine. Since a homolog of caspase-15 is absent in the human and the mouse genome, our results reveal an unexpected variability in the molecular apoptotic machinery of mammals.  相似文献   

18.
Reactive oxygen species (ROS) and caspases 8, 9, and 3 are reported to be crucial players in apoptosis induced by various stimuli. Recently, caspase 2 has been implicated in stress-induced apoptosis but the exact mechanism remains unclear. In this study, we report that ROS generation led to activation of caspase 2 during beta-carotene-induced apoptosis in the human leukemic T cell line Molt 4. The apoptosis progressed by simultaneous activation of caspases 8 and 9, and a cross talk between these initiator caspases was mediated by the proapoptotic protein Bid. Inhibition of caspases 2, 8, 9, and 3 independently suppressed the caspase cascade. The kinetics and function of caspase 2 were similar to those of caspase 3, suggesting its role as an effector caspase. Interestingly, beta-carotene-induced apoptosis was caspase 2 dependent but caspase 3 independent. The study also revealed cleavage of the antiapoptotic protein BclXL as an important event during apoptosis, which was regulated by ROS. The mechanistic studies identify a functional link between ROS and the caspase cascade involving caspase 2 and cleavage of BclXL. The interdependence of caspases 8, 9, 2, and 3 in the cascade provides evidence for the presence of an extensive feedback amplification loop in beta-carotene-induced apoptosis in Molt 4 cells.  相似文献   

19.
Beta-amyloid peptides (Abeta) are produced by a sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. The lack of Abeta production in beta-APP cleaving enzyme (BACE1)(-/-) mice suggests that BACE1 is the principal beta-secretase in mammalian neurons. Transfection of human APP and BACE1 into neurons derived from wild-type and BACE1(-/-) mice supports cleavage of APP at the canonical beta-secretase site. However, these studies also revealed an alternative BACE1 cleavage site in APP, designated as beta', resulting in Abeta peptides starting at Glu11. The apparent inability of human BACE1 to make this beta'-cleavage in murine APP, and vice versa, led to the hypothesis that this alternative cleavage was species-specific. In contrast, the results from human BACE1 transgenic mice demonstrated that the human BACE1 is able to cleave the endogenous murine APP at the beta'-cleavage site. To address this discrepancy, we designed fluorescent resonance energy transfer peptide substrates containing the beta- and beta'-cleavage sites within human and murine APP to compare: (i) the enzymatic efficiency; (ii) binding kinetics of a BACE1 active site inhibitor LY2039911; and (iii) the pharmacological profiles for human and murine recombinant BACE1. Both BACE1 orthologs were able to cleave APP at the beta- and beta'-sites, although with different efficiencies. Moreover, the inhibitory potency of LY2039911 toward recombinant human and native BACE1 from mouse or guinea pig was indistinguishable. In summary, we have demonstrated, for the first time, that recombinant BACE1 can recognize and cleave APP peptide substrates at the postulated beta'-cleavage site. It does not appear to be a significant species specificity to this cleavage.  相似文献   

20.
Caspase activation and proteolytic cleavages are the major events in the early stage of apoptosis. Identification of protein substrates cleaved by caspases will reveal the occurrence of the early events in the apoptotic process and may provide potential drug targets for cancer therapy. Although several N‐terminal MS‐based proteomic approaches have been developed to identify proteolytic cleavages, these methods have their inherent drawbacks. Here we apply a previously developed proteomic approach, protein C‐terminal enzymatic labeling (ProC‐TEL), to identify caspase cleavage events occurring in the early stage of the apoptosis of a myeloma cell line induced by kinase inhibition. Both previously identified and novel caspase cleavage sites are detected and the reduction of the expression level of several proteins is confirmed biochemically upon kinase inhibition although the current ProC‐TEL procedure is not fully optimized to provide peptide identifications comparable to N‐terminal labeling approaches. The identified cleaved proteins form a complex interaction network with central hubs determining morphological changes during the apoptosis. Sequence analyses show that some ProC‐TEL identified caspase cleavage events are unidentifiable when traditional N‐terminomic approaches are utilized. This work demonstrates that ProC‐TEL is a complementary approach to the N‐terminomics for the identification of proteolytic cleavage events such as caspase cleavages in signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号