首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tsyregma Li  Bruno Antonsson 《BBA》2008,1777(11):1409-1421
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAXoligo). We found that BAXoligo caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAXoligo also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAXoligo resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAXoligo-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAXoligo insertion into the OMM. Both BAXoligo- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H2O2 release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAXoligo but not by alamethicin. Thus, BAXoligo resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

2.
BAX cooperates with truncated BID (tBID) and Ca2+ in permeabilizing the outer mitochondrial membrane (OMM) and releasing mitochondrial apoptogenic proteins. The mechanisms of this cooperation are still unclear. Here we show that in isolated brain mitochondria, recombinant BAX readily self-integrates/oligomerizes in the OMM but produces only a minuscule release of cytochrome c, indicating that BAX insertion/oligomerization in the OMM does not always lead to massive OMM permeabilization. Ca2+ in a mitochondrial permeability transition (mPT)-dependent and recombinant tBID in an mPT-independent manner promoted BAX insertion/ oligomerization in the OMM and augmented cytochrome c release. Neither tBID nor Ca2+ induced BAX oligomerization in the solution without mitochondria, suggesting that BAX oligomerization required interaction with the organelles and followed rather than preceded BAX insertion in the OMM. Recombinant Bcl-xL failed to prevent BAX insertion/oligomerization in the OMM but strongly attenuated cytochrome c release. On the other hand, a reducing agent, dithiothreitol (DTT), inhibited BAX insertion/oligomerization augmented by tBID or Ca2+ and suppressed the BAX-mediated release of cytochrome c and Smac/DIABLO but failed to inhibit Ca2+-induced swelling. Altogether, these data suggest that in brain mitochondria, BAX insertion/oligomerization can be dissociated from OMM permeabilization and that tBID and Ca2+ stimulate BAX insertion/oligomerization and BAX-mediated OMM permeabilization by different mechanisms involving mPT induction and modulation of the SH-redox state.  相似文献   

3.
Cleaved or truncated BID (tBID) is known to oligomerize both BAK and BAX. Previously, BAK and BAX lacing the C-terminal fragment (BAXDeltaC) were shown to induce modest cytochrome c (Cyt c) release from rat brain mitochondria when activated by tBID. We now show that tBID plus monomeric full-length BAX induce extensive release of Cyt c, Smac/DIABLO, and Omi/HtrA2 (but not endonuclease G and the apoptosis inducing factor) comparable to the release induced by alamethicin. This occurs independently of the permeability transition without overt changes in mitochondrial morphology. The mechanism of the release may involve formation of reactive oxygen species (ROS) and activation of calcium-independent phospholipase A(2) (iPLA(2)). Indeed, increased ROS production and activated iPLA(2) were observed prior to massive Cyt c release. Furthermore, the extent of inhibition of Cyt c release correlated with the degree of suppression of iPLA(2) by the inhibitors propranolol, dibucaine, 4-bromophenacyl bromide, and bromenol lactone. Consistent with a requirement for iPLA(2) in Cyt c release from brain mitochondria, synthetic liposomes composed of lipids mimicking the outer mitochondrial membrane (OMM) but lacing iPLA(2) failed to release 10 kDa fluorescent dextran (FD-10) in response to tBID plus BAX. We propose that tBID plus BAX activate ROS generation, which subsequently augments iPLA(2) activity leading to changes in the OMM that allow translocation of certain mitochondrial proteins from the intermembrane space.  相似文献   

4.
Among the numerous effects of lithium on intracellular targets, its possible action on mitochondria remains poorly explored. In the experiments with suspension of isolated brain mitochondria, replacement of KCl by LiCl suppressed mitochondrial swelling, depolarization, and a release of cytochrome c induced by a single Ca2+ bolus. Li+ robustly protected individual brain mitochondria loaded with rhodamine 123 against Ca2+-induced depolarization. In the experiments with slow calcium infusion, replacement of KCl by LiCl in the incubation medium increased resilience of synaptic and nonsynaptic brain mitochondria as well as resilience of liver and heart mitochondria to the deleterious effect of Ca2+. In LiCl medium, mitochondria accumulated larger amounts of Ca2+ before they lost the ability to sequester Ca2+. However, lithium appeared to be ineffective if mitochondria were challenged by Sr2+ instead of Ca2+. Cyclosporin A, sanglifehrin A, and Mg2+, inhibitors of the mitochondrial permeability transition (mPT), increased mitochondrial Ca2+ capacity in KCl medium but failed to do so in LiCl medium. This suggests that the mPT might be a common target for Li+ and mPT inhibitors. In addition, lithium protected mitochondria against high Ca2+ in the presence of ATP, where cyclosporin A was reported to be ineffective. SB216763 and SB415286, inhibitors of glycogen synthase kinase-3beta, which is implicated in regulating reactive oxygen species-induced mPT in cardiac mitochondria, did not increase Ca2+ capacity of brain mitochondria. Altogether, these findings suggest that Li+ desensitizes mitochondria to elevated Ca2+ and diminishes cytochrome c release from brain mitochondria by antagonizing the Ca2+-induced mPT.  相似文献   

5.
Mitochondrial uptake of calcium in excitotoxicity is associated with subsequent increase in reactive oxygen species (ROS) generation and delayed cellular calcium deregulation in ischemic and neurodegenerative insults. The mechanisms linking mitochondrial calcium uptake and ROS production remain unknown but activation of the mitochondrial permeability transition (mPT) may be one such mechanism. In the present study, calcium increased ROS generation in isolated rodent brain and human liver mitochondria undergoing mPT despite an associated loss of membrane potential, NADH and respiration. Unspecific permeabilization of the inner mitochondrial membrane by alamethicin likewise increased ROS independently of calcium, and the ROS increase was further potentiated if NAD(H) was added to the system. Importantly, calcium per se did not induce a ROS increase unless mPT was triggered. Twenty-one cyclosporin A analogs were evaluated for inhibition of calcium-induced ROS and their efficacy clearly paralleled their potency of inhibiting mPT-mediated mitochondrial swelling. We conclude that while intact respiring mitochondria possess powerful antioxidant capability, mPT induces a dysregulated oxidative state with loss of GSH- and NADPH-dependent ROS detoxification. We propose that mPT is a significant cause of pathological ROS generation in excitotoxic cell death.  相似文献   

6.
The mechanisms of truncated BID (tBID)-induced Cyt c release from non-synaptosomal brain mitochondria were examined. Addition of tBID to mitochondria induced partial Cyt c release which was inhibited by anti-BAK antibodies, implicating BAK. Immunoblotting showed the presence of BAK, but not BAX, in brain mitochondria. tBID did not release Cyt c from rat liver mitochondria, which lacked both BAX and BAK. This indicated that tBID did not act independently of BAX and BAK. tBID plus monomeric BAX produced twice as much Cyt c release as did tBID or oligomeric BAX alone. Neither tBID alone nor in combination with BAX induced mitochondrial swelling. In both cases Cyt c release was insensitive to cyclosporin A plus ADP, inhibitors of the mitochondrial permeability transition (mPT). Recombinant Bcl-xL inhibited Cyt c release induced by tBID alone or in combination with monomeric BAX. Koenig's polyanion, an inhibitor of VDAC, suppressed tBID-induced Cyt c release from brain mitochondria mediated by BAK but not by BAX. Thus, tBID can induce mPT-independent Cyt c release from brain mitochondria by interacting with exogenous BAX and/or with endogenous BAK that may involve VDAC. In contrast, neither adenylate kinase nor Smac/DIABLO was released from isolated rat brain mitochondria via BAK or BAX.  相似文献   

7.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

8.
Photodynamic therapy (PDT), a novel and promising cancer treatment that employs a combination of a photosensitizing chemical and visible light, induces apoptosis in human epidermoid carcinoma A431 cells. However, the precise mechanism of PDT-induced apoptosis is not well characterized. To dissect the pathways of PDT-induced apoptosis, we investigated the involvement of mitochondrial damage by examining a second generation photosensitizer, the silicon phthalocyanine 4 (Pc 4). By using laser-scanning confocal microscopy, we found that Pc 4 localized to cytosolic membranes primarily, but not exclusively, in mitochondria. Formation of mitochondrial reactive oxygen species (ROS) was detected within minutes when cells were exposed to Pc 4 and 670-675 nm light. This was followed by mitochondrial inner membrane permeabilization, depolarization and swelling, cytochrome c release, and apoptotic death. Desferrioxamine prevented mitochondrial ROS production and the events thereafter. Cyclosporin A plus trifluoperazine, blockers of the mitochondrial permeability transition, inhibited mitochondrial inner membrane permeabilization and depolarization without affecting mitochondrial ROS generation. These data indicate that the mitochondrial ROS are critical in initiating mitochondrial inner membrane permeabilization, which leads to mitochondrial swelling, cytochrome c release to the cytosol, and apoptotic death during PDT with Pc 4.  相似文献   

9.
Reactive oxygen species (ROS) play a key role in promoting mitochondrial cytochrome c release and induction of apoptosis. ROS induce dissociation of cytochrome c from cardiolipin on the inner mitochondrial membrane (IMM), and cytochrome c may then be released via mitochondrial permeability transition (MPT)-dependent or MPT-independent mechanisms. We have developed peptide antioxidants that target the IMM, and we used them to investigate the role of ROS and MPT in cell death caused by t-butylhydroperoxide (tBHP) and 3-nitropropionic acid (3NP). The structural motif of these peptides centers on alternating aromatic and basic amino acid residues, with dimethyltyrosine providing scavenging properties. These peptide antioxidants are cell-permeable and concentrate 1000-fold in the IMM. They potently reduced intracellular ROS and cell death caused by tBHP in neuronal N(2)A cells (EC(50) in nm range). They also decreased mitochondrial ROS production, inhibited MPT and swelling, and prevented cytochrome c release induced by Ca(2+) in isolated mitochondria. In addition, they inhibited 3NP-induced MPT in isolated mitochondria and prevented mitochondrial depolarization in cells treated with 3NP. ROS and MPT have been implicated in myocardial stunning associated with reperfusion in ischemic hearts, and these peptide antioxidants potently improved contractile force in an ex vivo heart model. It is noteworthy that peptide analogs without dimethyltyrosine did not inhibit mitochondrial ROS generation or swelling and failed to prevent myocardial stunning. These results clearly demonstrate that overproduction of ROS underlies the cellular toxicity of tBHP and 3NP, and ROS mediate cytochrome c release via MPT. These IMM-targeted antioxidants may be very beneficial in the treatment of aging and diseases associated with oxidative stress.  相似文献   

10.
A small amount of reactive oxygen species (ROS) is generated through aerobic respiration even under physiological conditions. Because ROS are known to have various deteriorating actions, the way cells could evade the effects of ROS in and around mitochondria would determine the fate of cells. We previously reported that Cu,Zn-superoxide dismutase (SOD1), a cytosolic enzyme, is also localized in mitochondria in various types of cells. Therefore, we undertook this study to elucidate the physiological significance of SOD1 localization in and around mitochondria. We analyzed the effects of various reagents that could modulate mitochondrial respiration, ROS metabolism, and subcellular localization of SOD1 and cytochrome c. Using rat liver mitochondria, we have shown that Ca2+, Fe2+, or long-chain fatty acids increased the mitochondrial generation of ROS and that the resulting ROS oxidized the critical thiol groups in adenine nucleotide translocase (ANT). The oxidation of ANT induced mitochondrial swelling followed by the release of SOD1 and cytochrome c. Although inhibitors of electron transport, such as rotenone, antimycin A, and KCN, also increased ROS generation, they failed to (i) oxidize the critical thiol groups in ANT, (ii) induce swelling, and (iii) release SOD1 and cytochrome c. These results suggest that the oxidation of ANT thiols and the opening of the membrane permeability transition pores induce the release of both SOD1 and cytochrome c. We demonstrated that the loss of SOD1 increases the susceptibility of mitochondria to oxidative stresses and that the simultaneous release of SOD1 enhances the vicious cycle of apoptotic reactions triggered by the released cytochrome c. Therefore, SOD1 must have important roles in protecting mitochondria from ROS-induced injury. Our data also suggest that SOD1 release parallels cytochrome c release under all conditions. We propose that intramembranously localized SOD1 is a third reagent (along with AIF) that will regulate apoptosis.  相似文献   

11.
To clarify the mechanism of apoptosis of the macrophage-like cell line RAW264.7 induced by cationic liposomes, we focused on the mitochondria and investigated the changes in mitochondrial membrane potential and the release of cytochrome c following treatment of cationic liposomes composed of stearylamine (SA-liposomes). SA-liposomes induced mitochondrial membrane depolarization and also the release of cytochrome c from mitochondria. Caspase-3 was also activated by SA-liposome treatment. Pretreatment of cells with N-acetylcysteine, a scavenger of reactive oxygen species (ROS), conferred resistance to the induction of the membrane depolarization, cytochrome c release, and caspase-3 activation by SA-liposomes. These results indicated that SA-liposomes caused the apoptosis in RAW264.7 cells through the mitochondrial pathway, and ROS generation was required for this phenomenon.  相似文献   

12.
Primary chronic lymphocytic leukemia (CLL) cells are exquisitely sensitive to ABT-737, a small molecule BCL2-antagonist, which induces many of the classical biochemical and ultrastructural features of apoptosis, including BAX/BAK oligomerization, cytochrome c release, caspase activation and chromatin condensation. Surprisingly, ABT-737 also induces mitochondrial inner membrane permeabilization (MIMP) resulting in mitochondrial matrix swelling and rupture of the outer mitochondrial membrane (OMM), so permitting the rapid efflux of cytochrome c from mitochondrial cristae and facilitating rapid caspase activation and apoptosis. BAX and BAK appear to be involved in the OMM discontinuities as they localize to the OMM break points. Notably, ABT-737 induced mitochondrial matrix swelling and OMM discontinuities in other primary B-cell malignancies, including mantle cell, follicular and marginal zone lymphoma cells but not in several cell lines studied. Thus, we describe a new paradigm of apoptosis in primary B-cell malignancies, whereby targeting of BCL2 results in all the classical features of apoptosis together with OMM rupture independent of caspase activation. This mechanism may be far more prevalent than hitherto recognized due to the failure of most methods, used to measure apoptosis, to recognize such a mechanism.  相似文献   

13.
To elucidate the potential role of mitochondria in Taxol-induced cytotoxicity, we studied its direct mitochondrial effects. In Percoll-gradient purified liver mitochondria, Taxol induced large amplitude swelling in a concentration-dependent manner in the microM range. Opening of the permeability pore was also confirmed by the access of mitochondrial matrix enzymes for membrane impermeable substrates in Taxol-treated mitochondria. Taxol induced the dissipation of mitochondrial membrane potential (DeltaPsi) determined by Rhodamine123 release and induced the release of cytochrome c from the intermembrane space. All these effects were inhibited by 2.5 microM cyclosporine A. Taxol significantly increased the formation of reactive oxygen species (ROS) in both the aqueous and the lipid phase as determined by dihydrorhodamine123 and resorufin derivative. Cytochrome oxidase inhibitor CN(-), azide, and NO abrogated the Taxol-induced mitochondrial ROS formation while inhibitors of the other respiratory complexes and cyclosporine A had no effect. We confirmed that the Taxol-induced collapse of DeltaPsi and the induction of ROS production occurs in BRL-3A cells. In conclusion, Taxol-induced adenine nucleotide translocase-cyclophilin complex mediated permeability transition, and cytochrome oxidase mediated ROS production. Because both cytochrome c release and mitochondrial ROS production can induce suicide pathways, the direct mitochondrial effects of Taxol may contribute to its cytotoxicity.  相似文献   

14.
The mechanisms of Ca2+-induced release of Cytochrome c (Cyt c) from rat brain mitochondria were examined quantitatively using a capture ELISA. In 75 or 125 mm KCl-based media 1.4 micromol Ca2+/mg protein caused depolarization and mitochondrial swelling. However, this resulted in partial Cyt c release only in 75 mm KCl. The release was inhibited by Ru360, an inhibitor of the Ca2+ uniporter, and by cyclosporin A plus ADP, a combination of mitochondrial permeability transition inhibitors. Transmission electron microscopy (TEM) revealed that Ca2+-induced swelling caused rupture of the outer membrane only in 75 mm KCl. Koenig's polyanion, an inhibitor of mitochondrial porin (VDAC), enhanced swelling and amplified Cyt c release. Dextran T70 that is known to enhance mitochondrial contact site formation did not prevent Cyt c release. Exposure of cultured cortical neurons to 500 microM glutamate for 5 min caused Cyt c release into the cytosol 30 min after glutamate removal. MK-801 or CsA inhibited this release. Thus, the release of Cyt c from CNS mitochondria induced by Ca2+ in vitro as well as in situ involved the mPT and appeared to require the rupture of the outer membrane.  相似文献   

15.
Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.  相似文献   

16.
The outer mitochondrial membrane (OMM) is the last barrier between the mitochondrion and the cytoplasm. Breaches of OMM integrity result in the release of cytochrome c oxidase, triggering apoptosis. In this study, we used calibrated gold nanoparticles to probe the OMM in rat permeabilized ventricular cells and in isolated cardiac mitochondria under quasi-physiological ionic conditions and during permeability transition. Our experiments showed that under control conditions, the OMM is not permeable to 6-nm particles. However, 3-nm particles could enter the mitochondrial intermembrane space in mitochondria of permeabilized cells and isolated cardiac mitochondria. Known inhibitors of the voltage-dependent anion channel (VDAC), K?nig polyanion, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid inhibited this entrance. Thus, 3-nm particles must have entered the mitochondrial intermembrane space through the VDAC. The permeation of the isolated cardiac mitochondria OMM for 3-nm particles was approximately 20 times that in permeabilized cells, suggesting low availability of VDAC pores within the cell. Experiments with expressed green fluorescent protein showed the existence of intracellular barriers restricting the VDAC pore availability in vivo. Thus, our data showed that 1), the physical diameter of VDAC pores in cardiac mitochondria is >or=3 nm but 相似文献   

17.
Membrane permeability transition (MPT) of mitochondria has an important role in apoptosis of various cells. The classic type of MPT is characterized by increased Ca(2+) transport, membrane depolarization, swelling, and sensitivity to cyclosporin A. In this study, we investigated whether L-carnitine suppresses oleic acid-induced MPT using isolated mitochondria from rat liver. Oleic acid-induced MPT in isolated mitochondria, inhibited endogenous respiration, caused membrane depolarization, and increased large amplitude swelling, and cytochrome c (Cyt. c) release from mitochondria. L-Carnitine was indispensable to beta-oxidation of oleic acid in the mitochondria, and this reaction required ATP and coenzyme A (CoA). In the presence of ATP and CoA, L-carnitine stimulated oleic acid oxidation and suppressed the oleic acid-induced depolarization, swelling, and Cyt. c release. L-Carnitine also contributed to maintaining mitochondrial function, which was decreased by the generation of free fatty acids with the passage of time after isolation. These results suggest that L-carnitine acts to maintain mitochondrial function and suppresses oleic acid-mediated MPT through acceleration of beta-oxidation.  相似文献   

18.
Recent studies demonstrated that the generation of intracellular reactive oxygen species (ROS) was enhanced prior to the onset of mitochondrial membrane permeability transition (MPT), a critical step for the induction of DNA fragmentation and apoptosis. Although Ca2+ induces typical MPT that involves depolarization and swelling of mitochondria and finally releases cytochrome c into cytosol, the mechanism by which ROS induce MPT remains unclear. In the presence of inorganic phosphate, Ca2+ increased the oxygen consumption and ROS production by isolated mitochondria as determined by a chemiluminescence (CHL) method using L-012. Ca2+ increased the generation of H2O2 by some mechanism that was inhibited by cyclosporin A but not by superoxide dismutase (SOD) and trifluoperazine. Ca2+ decreased the content of free thiols in adenine nucleotide translocase (ANT) in mitochondrial membranes with concomitant increase in ROS generation. The presence of cyclosporin A, trifluoperazine, or SOD inhibited the Ca2+-induced increase of L-012 CHL and decrease in the free thiols of ANT. These results indicate that Ca2+ increases the generation of ROS which oxidize the free thiol groups in mitochondrial ANT, thereby inducing MPT to release cytochrome c.  相似文献   

19.
Bortezomib, a proteasome inhibitor, shows substantial anti-tumor activity in a variety of tumor cell lines, is in phase I, II, and III clinical trials and has recently been approved for the treatment of patients with multiple myeloma. The sequence of events leading to apoptosis following proteasome inhibition by bortezomib is unclear. Bortezomib effects on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration in the mitochondrial membrane potential (Delta psi m), and release of cytochrome c from mitochondria. With human H460 lung cancer cells, bortezomib exposure at 0.1 microM showed induction of apoptotic cell death starting at 24 h, with increasing effects after 48-72 h of treatment. After 3-6 h, an elevation in ROS generation, an increase in Delta psi m, and the release of cytochrome c into the cytosol, were observed in a time-dependent manner. Co-incubation with rotenone and antimycin A, inhibitors of mitochondrial electron transport chain complexes I and III, or with cyclosporine A, an inhibitor of mitochondrial permeability transition pore, resulted in inhibition of bortezomib-induced ROS generation, increase in Delta psi m, and cytochrome c release. Tiron, an antioxidant agent, blocked the bortezomib-induced ROS production, Delta psi m increase, and cytochrome c release. Tiron treatment also protected against the bortezomib-induced PARP protein cleavage and cell death. Benzyloxycarbonyl-VAD-fluoromethyl ketone, an inhibitor of pan-caspase, did not alter the bortezomib-induced ROS generation and increase in Delta psi m, although it prevented bortezomib-induced poly(ADP-ribose) polymerase cleavage and apoptotic death. In PC-3 prostate carcinoma cells (with overexpression of Bcl-2), a reduction of bortezomib-induced ROS generation, Delta psi m increase was correlated with cellular resistance to bortezomib and the attenuation of drug-induced apoptosis. The transient transfection of wild type p53 in p53 null H358 cells caused stimulation of the bortezomib-induced apoptosis but failed to enhance ROS generation and Delta psi m increase. Thus ROS generation plays a critical role in the initiation of the bortezomib-induced apoptotic cascade by mediation of the disruption of Delta psi m and the release of cytochrome c from mitochondria.  相似文献   

20.
Under stress conditions, mitochondria sense metabolic changes, e.g. in pH, cytoplasmic Ca(2+), energy status, and reactive oxygen species (ROS), and respond by induction of the permeability transition pore (PTP) and by releasing cytochrome c, thus initiating the programmed cell death (PCD) cascade in animal cells. In plant cells, the presence of all the components of the cascade has not yet been shown. In wheat (Triticum aestivum L.) root mitochondria, the onset of anoxia caused rapid dissipation of the inner membrane potential, initial shrinkage of the mitochondrial matrix and the release of previously accumulated Ca(2+). Ca(2+) uptake by mitochondria was dependent on the presence of inorganic phosphate. Treatment of mitochondria with high micromolar and millimolar Ca(2+) (but not Mg(2+)) concentrations induced high amplitude swelling, indicative of PTP opening. Alterations in mitochondrial volume were confirmed by transmission electron microscopy. Mitochondrial swelling was not sensitive to cyclosporin A (CsA)-an inhibitor of mammalian PTP. The release of cytochrome c was monitored under lack of oxygen. Anoxia alone failed to induce cytochrome c release from mitochondria. Oxygen deprivation and Ca(2+) ions together caused cytochrome c release in a CsA-insensitive manner. This process correlated positively with Ca(2+) concentration and required Ca(2+) localization in the mitochondrial matrix. Functional characteristics of wheat root mitochondria, such as membrane potential, Ca(2+) transport, swelling, and cytochrome c release under lack of oxygen are discussed in relation to PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号