首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应   总被引:11,自引:0,他引:11  
丁红  张智猛  戴良香  宋文武  康涛  慈敦伟 《生态学报》2013,33(17):5169-5176
为明确不同抗旱性花生品种的根系形态发育特征,探讨其根系形态发育特征对不同土壤水分状况的响应机制,在防雨棚旱池内进行土柱栽培试验,研究抗旱型品种“花育22号”、“唐科8号”和干旱敏感型品种“花育23号”3个不同抗旱性花生品种根系形态发育特征及其对干旱胁迫的响应.结果表明:抗旱型品种根系较发达,具有较大的根系生物量、总根长、总根系表面积.干旱胁迫使抗旱型品种根系总表面积和体积增加,而干旱敏感型品种则相反.干旱胁迫显著增加抗旱型品种“花育22号”20 cm以下土层内根长密度分布比例及根系表面积和体积,但“唐科8号”相应根系性状仅在20-40 cm土层内增加;干旱胁迫使干旱敏感型品种“花育23号”40 cm以下土层内各根系性状升高,但未达显著水平且其深层土壤内各根系性状增加幅度小于“花育22号”.花生根系总长、总表面积及0-20 cm土层内根系性状与产量间呈显著或极显著正相关.土壤水分亏缺条件下,花生主要通过增加深层土壤内根长、根系表面积和体积等形态特性,优化空间分布构型,以调节植株对水分的利用.  相似文献   

2.
Picosecond fluorescence kinetics of pea chloroplasts have been investigated at room temperature using a pulse fluorometer with a resolution time of 10-11 s. Fluorescence has been excited by both a ruby and neodymium-glass mode-locked laser and has been reocrded within the 650 to 800 nm spectral region. We have found three-component kinetics of fluorescence from pea chloroplasts with lifetimes of 80, 300 and 4500 ps, respectively. The observed time dependency of the fluorescence of different components on the functional state of the photosynthetic mechanism as well as their spectra enabled us to conclude that Photosystem I fluoresces with a lifetime of 80 ps (tauI) and Photosystem II fluoresces with a lifetime of 300 ps (tauII). Fluorescence with a lifetime of 4500 ps (tauIII) may be interpreted as originating from chlorophill monomeric forms which are not involved in photosynthesis. It was determined that the rise time of Photosystem I and Photosystem II fluorescence after 530 nm photoexcitation is 200 ps, which corrsponds to the time of energy migration to them from carotenoids.  相似文献   

3.
Understanding the molecular basis of plant performance under water-limiting conditions will help to breed crop plants with a lower water demand. We investigated the physiological and gene expression response of drought-tolerant (IR57311 and LC-93-4) and drought-sensitive (Nipponbare and Taipei 309) rice (Oryza sativa L.) cultivars to 18 days of drought stress in climate chamber experiments. Drought stressed plants grew significantly slower than the controls. Gene expression profiles were measured in leaf samples with the 20 K NSF oligonucleotide microarray. A linear model was fitted to the data to identify genes that were significantly regulated under drought stress. In all drought stressed cultivars, 245 genes were significantly repressed and 413 genes induced. Genes differing in their expression pattern under drought stress between tolerant and sensitive cultivars were identified by the genotype x environment (G x E) interaction term. More genes were significantly drought regulated in the sensitive than in the tolerant cultivars. Localizing all expressed genes on the rice genome map, we checked which genes with a significant G x E interaction co-localized with published quantitative trait loci regions for drought tolerance. These genes are more likely to be important for drought tolerance in an agricultural environment. To identify the metabolic processes with a significant G x E effect, we adapted the analysis software MapMan for rice. We found a drought stress induced shift toward senescence related degradation processes that was more pronounced in the sensitive than in the tolerant cultivars. In spite of higher growth rates and water use, more photosynthesis related genes were down-regulated in the tolerant than in the sensitive cultivars.  相似文献   

4.
Drought stress has multiple effects on the photosynthetic apparatus. Herein, we aimed to study the effect of drought stress on fluorescence characteristics of PSII in leaves of Plectranthus scutellarioides and explore potentially underlying mechanisms. Plants of P. scutellarioides were grown in a greenhouse and subjected to drought (DS, drought-stressed) or daily irrigation (control group). Leaf chlorophyll (Chl) index and induction kinetics curves of Chl a fluorescence and the JIP-test were used to evaluate effects of drought lasting for 20 d. Our results showed that both the leaf and soil relative water content decreased with increasing treatment duration. The leaf Chl index was reduced to half in the DS plants compared with the control group after 20 d. The minimal fluorescence in the DS plants was higher than that in the control plants after 10 d of the treatment. Maximum photochemical efficiency and lateral reactivity decreased with increasing treatment duration in the DS plants. With the continuing treatment, values of absorption flux per reaction center (RC), trapped energy flux per RC, dissipated energy flux per RC, and electron transport flux per RC increased in the earlier stage in the DS plants, while obviously decreased at the later stage of the treatment. In conclusion, drought stress inhibited the electron transport and reduced PSII photochemical activity in leaves of P. scutellarioides.  相似文献   

5.
The study presents the impact of drought stress on five finger millet varieties (PR202, VL146, VL315, PES400 and VR708), representing contrasting areas of Indian sub-continent. Drought stress induced increase in the activity of superoxide dismutase, ascorbate peroxidase and glutathione reductase was higher in PR202 and VL315, while the activity was lower in the varieties PES400 and VR708. Ascorbate peroxidase : superoxide dismutase ratio, which is a crucial factor in alleviating drought stress, was higher in varieties PR202 and VL315, whilst the varieties PES400 and VR708 exhibited a lower ratio under stress. The variety PES400 recorded maximum stress induced damage, as indicated by higher accumulation of malondialdehyde and hydrogen peroxide; whereas the variety PR202 recorded least stress induced cytotoxic damage. The results clearly indicate that better drought tolerance of the variety PR202 is positively related to the capacity of its antioxidant system to scavenge reactive oxygen species, resulting in a reduced incidence of oxidative damage. Ascorbate peroxidase : superoxide dismutase ratio is found to be a critical factor governing the stress tolerance potential of different varieties. Therefore, varieties PR202 and VL315 were found to be tolerant while PES400 was susceptible to drought stress.  相似文献   

6.
Direct effects and after-effects of soil drought for 7 and 14 d were examined on seedling dry matter, leaf water potential (ψ), leaf injury index (LI), and chlorophyll (Chl) content of drought (D) resistant and sensitive triticale and maize genotypes. D caused higher decrease in number of developed leaves and dry matter of shoots and roots in the sensitive genotypes than in the resistant ones. Soil D caused lower decrease of ψ in the triticale than maize leaves. Influence of D on the Chl b content was considerably lower than on the Chl a content. In triticale the most harmful D impact was observed for physiologically younger leaves, in maize for the older ones. A period of 7-d-long recovery was too short for a complete removal of an adverse influence of D.  相似文献   

7.
The effect of a short (7 days) and prolonged (14 days) soil drought (D) on leaf optical properties (R reflectance, T transmittance and A absorbance) in PAR and NIR range of irradiation, and on changes in leaf water potential (ψ), leaf injury index (LI), leaf thickness (LT) and chlorophyll (a + b) content (Chl) was studied for maize and triticale genotypes differing in drought tolerance. Under control conditions (C) leaves of maize in comparison to triticale were better hydrated, were thicker and had higher content of chlorophyll (a + b). In non-stressed plants, small differences were observed in measurements of R, T and A. In the range from 500 to 600 nm, the differences between D-resistant and D-sensitive were observed only in transmittance (T) and in range from 700 to 1,100 nm in absorbance (A). In genotypes belonging to the group of D-sensitive T in PAR range and A in NIR range were two times higher than in D-resistant ones. However, in NIR range R for D-sensitive genotypes was lower than for D-resistant ones. The drought stress caused the decrease in ψ, Chl, LT and the increase in leaf injury index (LI). Soil drought applied within 14 days caused larger changes in these physiological characters in comparison to 7 days drought. The observed harmful influence of drought was more visible for maize than triticale. Moreover for genotypes belonging to D-sensitive ones, changes were larger than for D-resistant ones. Similar to changes in ψ, LT and LI drought stress caused changes in leaf optical properties parameters R, A and T. In the PAR range, the highest changes were observed in R, whereas changes in T and A, which were not considerable. Both in maize and triticale, increase in R was higher in plants subjected to 14 days drought than in plants exposed to drought for 7 days. In maize, increase in R was larger for D-sensitive genotype. For both species, changes in T and A of PAR range were small. In NIR range, an increase in R and A, and decrease in T were observed. After 7 days of recovery in plants subjected to shorter period of drought significant differences were still visible in most cases. The same was observed for ψ, LT, LI and Chl parameters. It shows that the period of 7 days rehydration is too short to remove the injuries caused by drought stress. This results indicate that measurements of R, T and A might be useful in practical application for the estimation of the drought tolerance level. Some limitations in the practical application for plant breeding may be caused by relatively high cost of necessary equipment.  相似文献   

8.
Micropropagated rose plants (Rosa hybrida L., cv. New Dawn) were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus intraradices (Schenk and Smith) and subjected to different drought regimens. The dual objectives of these experiments were to investigate the mechanism and the extent to which AM can prevent drought damages and whether physiological analyses reveal enhanced drought tolerance of an economically important plant such as the rose. In a long-term drought experiment with four different water regimens, visual scoring of wilt symptoms affirmed that AM in a selected host–symbiont combination increased plant performance. This effect was mostly expressed if moderate drought stress was constantly applied over a long period. In a short-term experiment in which severe drought stress was implemented and plants were allowed to recover after 4 or 9 days, no visual differences between mycorrhizal and non-mycorrhizal roses were observed. Therefore, the early physiological steps conferring drought tolerance were prone to investigation. Proline content in leaves proved to be an unsuitable marker for AM-induced drought tolerance, whereas analysis of chlorophyll a fluorescence using the JIP test (collecting stress-induced changes of the polyphasic O-J-I-P fluorescence kinetics in a non-destructive tissue screening) was more explanatory. Parameters derived from this test could describe the extent of foliar stress response and help to differentiate physiological mechanisms of stress tolerance. AM led to a more intense electron flow and a higher productive photosynthetic activity at several sites of the photosynthetic electron transport chain. A K step, known as a stress indicator of general character, appeared in the fluorescence transient only in drought-stressed non-mycorrhizal plants; conversely, the data elucidate a stabilising effect of AM on the oxygen-evolving complex at the donor site of photosystem (PS) II and at the electron-transport chain between PS II and PS I. If drought stress intensity was reduced by a prolonged and milder drying phase, these significant tolerance features were less pronounced or missing, indicating a possible threshold level for mycorrhizal tolerance induction.  相似文献   

9.
The effects of dibromothymoquinone (DBMIB) and methylviologen (MV) on the Chl a fluorescence induction transient (OJIP) were studied in vivo. Simultaneously measured 820-nm transmission kinetics were used to monitor electron flow through photosystem I (PSI). DBMIB inhibits the reoxidation of plastoquinol by binding to the cytochrome b(6)/f complex. MV accepts electrons from the FeS clusters of PSI and it allows electrons to bypass the block that is transiently imposed by ferredoxin-NADP(+)-reductase (FNR) (inactive in dark-adapted leaves). We show that the IP phase of the OJIP transient disappears in the presence of DBMIB without affecting F(m). MV suppresses the IP phase by lowering the P level compared to untreated leaves. These observations indicate that PSI activity plays an important role in the kinetics of the OJIP transient. Two requirements for the IP phase are electron transfer beyond the cytochrome b(6)/f complex (blocked by DBMIB) and a transient block at the acceptor side of PSI (bypassed by MV). It is also observed that in leaves, just like in thylakoid membranes, DBMIB can bypass its own block at the cytochrome b(6)/f complex and donate electrons directly to PC(+) and P700(+) with a donation time tau of 4.3 s. Further, alternative explanations of the IP phase that have been proposed in the literature are discussed.  相似文献   

10.
11.
The fast fluorescence decay kinetics of two photosynthetic mutants of corn (Zea mays) have been compared with those of normal corn. The fluorescence of normal corn can be resolved into three exponential decay components of lifetime 900–1500 ps (slow), 300–500 ps (middle) and 50–120 ps (fast), the yields of which are affected by light intensity and Mg2+ levels. The Photosystem II-(PS II)-defective mutant hcf-3 has similar decay lifetimes (approx. 1200, 450 and 100 ps) but is not affected by light intensity, reflecting the absence of PS II charge recombination. However, yields do respond to Mg2+ in a fashion typical of normal corn, which may be correlated with the presence of normal levels of light-harvesting chlorophyll a + b complex (LHCP). The PS I mutant hcf-50 also shows three-component decay kinetics. In conjunction with the results on the LHCP-deficient mutant of barley presented in a recent paper (Karukstis, K.K. and Sauer, K. (1984) Biochim. Biophys. Acta 766, 148–155), these data suggest that the slow component of normal chloroplasts is kinetically controlled by the decay processes of the LHCP and that the energy comes from one of two sources: (a) charge recombination in the reaction centre or (b) energy transferred within or between LHCP units only. The fast component appears to originate from both PS I and PS II. The complex response of the middle component to cations and light intensity, and its presence in all of the mutants, suggests that it also may have multiple origins.  相似文献   

12.
The causes of reproductive failure under drought stress (DS) are poorly understood. We hypothesized that reproductive failure was related to drought-induced changes in pistil biochemistry. To address this hypothesis, a water deficit-induced experiment was conducted with two cotton cultivars (Dexiamian 1, drought tolerant; Yuzaomian 9110, drought sensitive). Results showed that DS decreased the photosynthesis of subtending leaf and downregulated sucrose transporter gene (GhSUT-1) expression in pistil for both cultivars, resulting in lower pistil carbon accumulation which was reflected in the decreased starch accumulation. Lower starch, as potential energy, and adenosine triphosphate (ATP), as direct energy, in droughted pistils suggested less energy for pollen tube entrance into ovules, reducing the fertilized ovule number and fertilization efficiency. Further, although pistil peroxidase activity increased under DS, a higher hydrogen peroxide (H2O2) level still was measured in droughted pistils than well-watered pistils, damaging reproductive activities. Moreover, larger decreases in photosynthesis, pistil GhSUT-1 expression, carbon accumulation, starch and ATP contents caused by DS for Yuzaomian 9110 than Dexiamian 1, and different responses of superoxide dismutase and catalase activities, and ascorbic acid and H2O2 contents to DS between the two cultivars might be the reasons causing a greater decrease in fertilization efficiency for Yuzaomian 9110 than Dexiamian 1 under DS. Thus, we suggest that decreased ovule fertilization under DS was related to the disorganized carbohydrate metabolism and inefficient antioxidant defense in droughted pistils, and the effects of DS on pistil carbohydrate metabolism and antioxidant defense were more significant for drought-sensitive cultivars than drought-tolerant cultivars.  相似文献   

13.
The main objective of this study was to evaluate the effects of salt stress on the photosynthetic electron transport chain using two chickpea lines (Cicer arietinum L.) differing in their salt stress tolerance at the germination stage (AKN 87 and AKN 290). Two weeks after sowing, seedlings were exposed to salt stress for 2 weeks and irrigated with 200 ml of 200 mM NaCl every 2 days. The polyphasic OJIP fluorescence transient and the 820-nm transmission kinetics (photosystem I) were used to evaluate the effects of salt stress on the functionality of the photosynthetic electron transport chain. It was observed that a signature for salt stress was a combination of a higher J step (VJ), a smaller IP amplitude, and little or no effect on the primary quantum yield of PSII (φPo). We observed for AKN 290 a shorter leaf life cycle, which may represent a mechanism to cope with salt stress. For severely salt-stressed leaves, an inhibition of electron flow between the PQ pool and P700 was found. The data also suggest that the properties of electron flow beyond PSI are affected by salt stress.  相似文献   

14.
15.
The changing pattern, of WSD and concomitant protein changes were scanned in twoZea mays cultivars, with differential sensitivity to water stress. Increasing protein values were recorded in resistant cv. Ageti-76 with decreasing osmotic potentials of substrate (on 3rd day of stress), although the values in susceptible cv. Vijay remained almost on a par with the controls. In another experiment both the cultivars revealed initial increase of protein on 2nd day at osmotic potentials of - 2 and -4 × 106 Pa, however, values declined up to day 7 of stress. WSD showed an increasing trend in both the experiments, although slightly higher values of WSD were registered in cv. Ageti-76 in comparison with cv. Vijay. The significance of protein changes in reference to drought is discussed.  相似文献   

16.
The mechanism of the severe quenching of chlorophyll (Chl) fluorescence under drought stress was studied in a lichen Physciella melanchla, which contains a photobiont green alga, Trebouxia sp., using a streak camera and a reflection-mode fluorescence up-conversion system. We detected a large 0.31 ps rise of fluorescence at 715 and 740 nm in the dry lichen suggesting the rapid energy influx to the 715-740 nm bands from the shorter-wavelength Chls with a small contribution from the internal conversion from Soret bands. The fluorescence, then, decayed with time constants of 23 and 112 ps, suggesting the rapid dissipation into heat through the quencher. The result confirms the accelerated 40 ps decay of fluorescence reported in another lichen (Veerman et al., 2007 [36]) and gives a direct evidence for the rapid energy transfer from bulk Chls to the longer-wavelength quencher. We simulated the entire PS II fluorescence kinetics by a global analysis and estimated the 20.2 ns− 1 or 55.0 ns− 1 energy transfer rate to the quencher that is connected either to the LHC II or to the PS II core antenna. The strong quenching with the 3-12 times higher rate compared to the reported NPQ rate, suggests the operation of a new type of quenching, such as the extreme case of Chl-aggregation in LHCII or a new type of quenching in PS II core antenna in dry lichens.  相似文献   

17.
The hypothesis that changes in the IP amplitude of the fluorescence transient OJIP reflect changes in leaf photosystem I (PSI) content was tested using mineral-deficient sugar beet plants. Young sugar beet plants (Beta vulgaris) were grown hydroponically on nutrient solutions containing either 1 mM or no Mg(2+) and 2.1 μM to 1.88 mM SO(4)(2-) for 4 weeks. During this period two leaf pairs were followed: the already developed second leaf pair and the third leaf pair that was budding at the start of the treatment. The IP amplitude [ΔF(IP) (fluorescence amplitude of the I-to-P-rise) and its relative contribution to the fluorescence rise: ΔV(IP) (amplitude of the relative variable fluorescence of the I-to-P-rise = relative contribution of the I-to-P-rise to the OJIP-rise)] and the amplitude of the transmission change at 820 nm (difference between all plastocyanin and the primary electron donor of photosystems I oxidized and reduced, respectively) relative to the total transmission signal (ΔI(max) /I(tot)) were determined as a function of the treatment time. Correlating the transmission and the two fluorescence parameters yielded approximately linear relationships in both cases. For the least severely affected leaves the parameter ΔV(IP) correlated considerably better with ΔI(max) /I(tot) than ΔF(IP) indicating that it is the ratio PSII:PSI that counts. To show that the relationship also holds for other plants and treatments, data from salt- and drought-stressed plants of barley, chickpea and pea are shown. The relationship between ΔV(IP) and PSI content was confirmed by western blot analysis using an antibody against psaD. The good correlations between ΔI(max) /I(tot) and ΔF(IP) and ΔV(IP) , respectively, suggest that changes in the IP amplitude can be used as semi-quantitative indicators for (relative) changes in the PSI content of the leaf.  相似文献   

18.
快速叶绿素荧光动力学可以在无损情况下探知叶片光合机构的损伤程度, 快速叶绿素荧光测定和分析技术(JIP-test)将测量值转化为多种具有生物学意义的参数, 因而被广泛应用于植物光合机构对环境的响应机制研究。该文研究了超大甜椒(Capsicum annuum)幼苗在强光及不同NaCl浓度胁迫下的荧光响应情况。与单纯强光胁迫相比, NaCl胁迫引起了叶绿素荧光诱导曲线的明显改变, 光系统II (PSII)光抑制加重, 同时PSII反应中心和受体侧受到明显影响, 而且高NaCl浓度胁迫下PSII供体侧受伤害明显, 同时PSI反应中心活性(P700+)在盐胁迫下明显降低。这些结果表明, NaCl胁迫会增强强光对超大甜椒光系统的光抑制, 并且浓度越高抑制越明显, 但对PSI的抑制作用低于PSII。高NaCl浓度胁迫易对PSII供体侧造成破坏, 且PSI光抑制严重。  相似文献   

19.
Although it has long been recognized that water deficit in plants reduces photosystem (PS) II mRNAs and proteins, the detailed mechanisms behind this have not been thoroughly elucidated. In the present study, effects of water stress in barley leaves on degradation of major PSII mRNA and dissociation and migration of PSII proteins were investigated. The results indicated that (1) the steady-state levels of major PSII mRNAs and proteins declined with increasing water stress, as a consequence of increased degradation; under severe water stress, the half-lives of D1 and D2 proteins decreased from 12–14 h to 7–8 h and the half-lives of psbA and psbD mRNA decreased from above 16 to 6–10 h; (2) monomerization of PSII were increased during water stress. Severe water stress accelerated turnover of PSII and inhibited PSII activities.  相似文献   

20.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号