首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The main mechanism causing catabolite repression in Escherichia coli is the dephosphorylation of enzyme IIAGlc, one of the enzymes of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS). The PTS is involved in the uptake of a large number of carbohydrates that are phosphorylated during transport, phosphoenolpyruvate (PEP) being the phosphoryl donor. Dephosphorylation of enzyme IIAGlc causes inhibition of uptake of a number of non-PTS carbon sources, a process called inducer exclusion. In this paper, we show that dephosphorylation of enzyme IIAGlc is not only caused by the transport of PTS carbohydrates, as has always been thought, and that an additional mechanism causing dephosphorylation exists. Direct monitoring of the phosphorylation state of enzyme IIAGlc also showed that many carbohydrates that are not transported by the PTS caused dephosphorylation during growth. In the case of glucose 6-phosphate, it was shown that transport and the first metabolic step are not involved in the dephosphorylation of enzyme IIAGlc, but that later steps in the glycolysis are essential. Evidence is provided that the [PEP]–[pyruvate] ratio, the driving force for the phosphorylation of the PTS proteins, determines the phosphorylation state of enzyme IIAGlc. The implications of these new findings for our view on catabolite repression and inducer exclusion are discussed.  相似文献   

2.
3.
大肠杆菌分解代谢产物阻遏效应研究进展   总被引:1,自引:1,他引:1  
马婉晴  章珍  刘悦琳  王华忠 《遗传》2010,32(6):571-576
细菌在多种碳源共存的环境中优先利用一种(通常是葡萄糖)的现象被称为分解代谢产物阻遏效应。国内现有分子生物学及相关课程教材普遍对该效应的机理解释不清甚至给出错误的解释。大肠杆菌葡萄糖-乳糖分解代谢产物阻遏效应产生的根本原因不是胞内葡萄糖的存在, 而是葡萄糖经PTS(Phosphoenolpyruvate: carbohydrate phosphotransferase system)系统向胞内运输同时藕联磷酸化的过程。磷酸向葡萄糖的传递导致PTS关键组分EⅡAGlc去磷酸化形式的积累。该形式的EⅡAGlc可以与质膜上本底表达的乳糖透性酶LacY结合, 阻止诱导物乳糖的吸收。cAMP的影响也是通过激活参与PTS系统的关键基因而加强了诱导物排斥作用。此外, 去磷酸化形式的EⅡBGlc和YeeⅠ对全局性转录阻遏蛋白Mlc活性的抑制也保证了PTS系统关键组分蛋白的基因表达。文章综述了近年来有关大肠杆菌分解代谢产物阻遏效应机理的最新研究进展, 并对相关教材有关这一内容的阐述提出了修改建议。  相似文献   

4.
5.
6.
In most low-G+C gram-positive bacteria, the phosphoryl carrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) becomes phosphorylated at Ser-46. This ATP-dependent reaction is catalyzed by the bifunctional HPr kinase/P-Ser-HPr phosphatase. We found that serine-phosphorylated HPr (P-Ser-HPr) of Lactococcus lactis participates not only in carbon catabolite repression of an operon encoding a beta-glucoside-specific EII and a 6-P-beta-glucosidase but also in inducer exclusion of the non-PTS carbohydrates maltose and ribose. In a wild-type strain, transport of these non-PTS carbohydrates is strongly inhibited by the presence of glucose, whereas in a ptsH1 mutant, in which Ser-46 of HPr is replaced with an alanine, glucose had lost its inhibitory effect. In vitro experiments carried out with L. lactis vesicles had suggested that P-Ser-HPr is also implicated in inducer expulsion of nonmetabolizable homologues of PTS sugars, such as methyl beta-D-thiogalactoside (TMG) and 2-deoxy-D-glucose (2-DG). In vivo experiments with the ptsH1 mutant established that P-Ser-HPr is not necessary for inducer expulsion. Glucose-activated 2-DG expulsion occurred at similar rates in wild-type and ptsH1 mutant strains, whereas TMG expulsion was slowed in the ptsH1 mutant. It therefore seems that P-Ser-HPr is not essential for inducer expulsion but that in certain cases it can play an indirect role in this regulatory process.  相似文献   

7.
8.
9.
Bacterial growth on one or more carbon sources requires careful control of the uptake and metabolism of these carbon sources. In Escherichia coli, the phosphorylation state of enzyme IIAGlc of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) is involved in this control in two ways. The unphosphorylated form of IIAGlc causes 'inducer exclusion', the inhibition of uptake of a number of non-PTS carbon sources, including lactose uptake by the lactose permease. The phosphorylated form of enzyme IIAGlc probably activates adenylate cyclase. In cells growing on lactose, enzyme IIAGlc was approximately 50% dephosphorylated, suggesting that lactose could inhibit its own uptake. This inhibition could be demonstrated by comparing lactose uptake rates in the wild-type strain and in a mutant in which the lactose carrier was insensitive to inducer exclusion. In this deregulated mutant strain, lactose was consumed much faster, and large amounts of glucose were excreted. It was shown that enzyme IIAGlc was dephosphorylated more strongly and that the cAMP level was lower in the mutant, most probably causing the observed decrease in lac expression level. When the lac expression level in the mutant strain was increased to that of the parent strain by adding exogenous cAMP, growth on lactose was slower, suggesting that enzyme IIAGlc-mediated inhibition of lactose uptake and downregulation of the lac expression level protected the cells against excessive lactose influx. An even stronger increase in the lac expression level in a mutant lacking enzyme IIAGlc caused complete growth arrest. We conclude that the autoregulatory mechanism that controls lactose uptake is an important mechanism for the cells in adjusting the uptake rate to their metabolic capacity.  相似文献   

10.
We have cloned and sequenced the Lactobacillus casei hprK gene encoding the bifunctional enzyme HPr kinase/P-Ser-HPr phosphatase (HprK/P). Purified recombinant L. casei HprK/P catalyzes the ATP-dependent phosphorylation of HPr, a phosphocarrier protein of the phosphoenolpyruvate:carbohydrate phosphotransferase system at the regulatory Ser-46 as well as the dephosphorylation of seryl-phosphorylated HPr (P-Ser-HPr). The two opposing activities of HprK/P were regulated by fructose-1,6-bisphosphate, which stimulated HPr phosphorylation, and by inorganic phosphate, which stimulated the P-Ser-HPr phosphatase activity. A mutant producing truncated HprK/P was found to be devoid of both HPr kinase and P-Ser-HPr phosphatase activities. When hprK was inactivated, carbon catabolite repression of N-acetylglucosaminidase disappeared, and the lag phase observed during diauxic growth of the wild-type strain on media containing glucose plus either lactose or maltose was strongly diminished. In addition, inducer exclusion exerted by the presence of glucose on maltose transport in the wild-type strain was abolished in the hprK mutant. However, inducer expulsion of methyl beta-D-thiogalactoside triggered by rapidly metabolizable carbon sources was still operative in ptsH mutants altered at Ser-46 of HPr and the hprK mutant, suggesting that, in contrast to the model proposed for inducer expulsion in gram-positive bacteria, P-Ser-HPr might not be involved in this regulatory process.  相似文献   

11.
Phosphorylation of HPr on a serine residue at position 46 (Ser-46) by an ATP-dependent protein kinase has been reported in several Gram-positive bacteria, and the resulting intermediate, HPr(Ser-P), has been shown to mediate inducer exclusion in lactococci and lactobacilli and catabolite repression in Bacillus subtilis and Bacillus megaterium . We report here the phenotypic properties of an isogenic spontaneous mutant (G22.4) of Streptococcus salivarius ATCC 25975, in which a missense mutation results in the replacement of isoleucine at position 47 (Ile-47) by threonine (Thr) in HPr. This substitution did not prevent the phosphorylation of HPr on Ser-46, nor did it impede the phosphorylation of HPr on His-15 by EI or the transfer of the phosphoryl group from HPr(His∼P) to other PTS proteins. However, the I47T substitution did perturb, in glucose-grown but not in galactose-grown cells, the cellular equilibrium between the various forms of HPr, resulting in an increase in the amount of free HPr at the expense of HPr(His∼P)(Ser-P); the levels of HPr(His∼P) and HPr(Ser-P) were not affected. Growth on melibiose was virtually identical for the wild-type and mutant strains, whereas the generation time of the mutant on the other sugars tested (glucose, fructose, mannose, lactose and galactose) increased 1.2- to 1.5-fold. The preferential metabolism of PTS sugars (glucose and fructose) over non-PTS sugars (lactose and melibiose) that is observed in wild-type cells was abolished in cells of mutant G22.4. Moreover, α- and β-galactosidases were derepressed in glucose- and fructose-grown cells of the mutant. The data suggest that HPr regulates the preferential metabolism of PTS sugars over the non-PTS sugars, lactose and melibiose, through the repression of the pertinent catabolic genes. This HPr-dependent repression, however, seems to occur solely when cells are growing on a PTS sugar.  相似文献   

12.
Galactose appears to be the physiological inducer of the chromosomal lac operon in Klebsiella aerogenes. Both lactose and galactose are poor inducers in strains having a functional galactose catabolism (gal) operon, but both are excellent inducers in gal mutants. Thus the slow growth of K. aerogenes on lactose reflects the rapid degradation of the inducer. Several pts mutations were characterized and shown to affect both inducer exclusion and permanent catabolite repression. The beta-galactosidase of pts mutants cannot be induced at all by lactose, and pts mutants appear to have a permanent and constitutive inducer exclusion phenotype. In addition, pts mutants show a reduced rate of glucose metabolism, leading to slower growth on glucose and a reduced degree of glucose-mediated permanent catabolite repression. The crr-type pseudorevertants of pts mutations relieve the constitutive inducer exclusion for lac but do not restore the full level of glucose-mediated permanent catabolite repression and only slightly weaken the glucose-mediated inducer exclusion. Except for weakening the glucose-mediated permanent catabolite repression, pts and crr mutations have no effect on expression of the histidine utilization (hut) operons.  相似文献   

13.
Glucose is a universal energy source and a potent inducer of surface colonization for many microbial species. Highly efficient sugar assimilation pathways ensure successful competition for this preferred carbon source. One such pathway is the phosphoenolpyruvate phosphotransferase system (PTS), a multicomponent sugar transport system that phosphorylates the sugar as it enters the cell. Components required for transport of glucose through the PTS include enzyme I, histidine protein, enzyme IIAGlc, and enzyme IIBCGlc. In Escherichia coli, components of the PTS fulfill many regulatory roles, including regulation of nutrient scavenging and catabolism, chemotaxis, glycogen utilization, catabolite repression, and inducer exclusion. We previously observed that genes encoding the components of the Vibrio cholerae PTS were coregulated with the vps genes, which are required for synthesis of the biofilm matrix exopolysaccharide. In this work, we identify the PTS components required for transport of glucose and investigate the role of each of these components in regulation of biofilm formation. Our results establish a novel role for the phosphorylated form of enzyme I in specific regulation of biofilm-associated growth. As the PTS is highly conserved among bacteria, the enzyme I regulatory pathway may be relevant to a number of biofilm-based infections.  相似文献   

14.
The symbiotic, nitrogen-fixing bacterium Sinorhizobium meliloti favors succinate and related dicarboxylic acids as carbon sources. As a preferred carbon source, succinate can exert catabolite repression upon genes needed for the utilization of many secondary carbon sources, including the alpha-galactosides raffinose and stachyose. We isolated lacR mutants in a genetic screen designed to find S. meliloti mutants that had abnormal succinate-mediated catabolite repression of the melA-agp genes, which are required for the utilization of raffinose and other alpha-galactosides. The loss of catabolite repression in lacR mutants was seen in cells grown in minimal medium containing succinate and raffinose and grown in succinate and lactose. For succinate and lactose, the loss of catabolite repression could be attributed to the constitutive expression of beta-galactoside utilization genes in lacR mutants. However, the inactivation of lacR did not cause the constitutive expression of alpha-galactoside utilization genes but caused the aberrant expression of these genes only when succinate was present. To explain the loss of diauxie in succinate and raffinose, we propose a model in which lacR mutants overproduce beta-galactoside transporters, thereby overwhelming the inducer exclusion mechanisms of succinate-mediated catabolite repression. Thus, some raffinose could be transported by the overproduced beta-galactoside transporters and cause the induction of alpha-galactoside utilization genes in the presence of both succinate and raffinose. This model is supported by the restoration of diauxie in a lacF lacR double mutant (lacF encodes a beta-galactoside transport protein) grown in medium containing succinate and raffinose. Biochemical support for the idea that succinate-mediated repression operates by preventing inducer accumulation also comes from uptake assays, which showed that cells grown in raffinose and exposed to succinate have a decreased rate of raffinose transport compared to control cells not exposed to succinate.  相似文献   

15.
The effects of three phosphoenolpyruvate (PEP)-dependent PTS carbon sources (glucose, mannose and maltose) and three non-PTS carbon sources (glycerol, galactose, and lactose) on the formation of four carotenoids with diverse structures and on the cell growth of the recombinant Escherichia coli were investigated. The biosynthetic pathways of four carotenoids, C30 diapolycopene, C30 diapotorulene, C40 lycopene, and C40 beta-carotene, were engineered in E. coli. The resulting E. coli cells were grown in a mineral medium supplemented with each of the six carbon sources. Among the six carbon sources, non-PTS glycerol showed the highest performance in production of all four carotenoid structures, whereas PTS glucose showed the lowest performance. Based on the conversion yield, carotenoid-producing capability, and the cell density, we found that there was no close correlation between PTS and non-PTS transport mechanism and carotenoid formations in E. coli.  相似文献   

16.
The role of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in the phenomenon of inducer exclusion was examined in whole cells of Salmonella typhimurium which carried the genes of the Escherichia coli lactose operon on an episome. In the presence of the PTS substrate methyl alpha-D-glucopyranoside, the extent of accumulation of the lactose analog methyl beta-D-thiogalactopyranoside was reduced. A strain carrying a mutation in the gene for Enzyme I was hypersensitive to the PTS effect, while a crr mutant strain was completely resistant. Influx, efflux, and exchange of galactosides via the lactose "permease" were inhibited by methyl alpha-glucoside. This inhibition occurred in the presence of metabolic energy poisons, and therefore does not involve either the generation of metabolic energy or energy-coupling to the lactose transport system. When the cellular content of the lactose permease was increased by induction with isopropyl beta-D-thiogalactopyranoside, cells gradually became less sensitive to inducer exclusion. The extent of inhibition of methyl beta-thiogalactoside accumulation by methyl alpha-glucoside was shown to be dependent on the relative cellular content of the PTS and lactose system. The data were consistent with an hypothesis involving partial inactivation of galactoside transport due to interaction between a component of the PTS and the lactose permease. By examination of the effects of the PTS and lactose uptake and melibiose permease-mediated uptake of methyl beta-thiogalactoside, it was further shown that the manner in which inducer exclusion is expressed is independent on the routes available to the non-PTS sugar for exit from the cell.  相似文献   

17.
Studies indicated that prior growth of Staphylococcus aureus 196E on glycerol or maltose led to cells with repressed ability to produce staphylococcal enterotoxin A (SEA). A PTS- mutant (196E-MA) lacking the phosphoenolpyruvate phosphotransferase system (PTS), derived from strain 196E, showed considerably less repression of SEA synthesis when cells were grown in glycerol or maltose. Since SEA synthesis is not repressed in the PTS- mutant, repression of toxin synthesis by glycerol, maltose or glucose in S. aureus 196E appears to be related to the presence of a functional PTS irrespective of whether the carbohydrate requires the PTS for cell entry. With lactose as an inducer, glucose, glycerol, maltose or 2-deoxyglucose repressed the synthesis of beta-galactosidase in S. aureus 196E. It is postulated that these compounds repress enzyme synthesis by an inducer exclusion mechanism involving phosphorylated sugar intermediates. However, inducer exclusion probably does not explain the mechanism of repression of SEA synthesis by carbohydrates.  相似文献   

18.
19.
The conjugative plasmid pUR400 determines tetracycline resistance and enables cells of Escherichia coli K-12 to utilize sucrose as the sole carbon source. Three types of mutants affecting sucrose metabolism were derived from pUR400. One type lacked a specific transport system (srcA); another lacked sucrose-6-phosphate hydrolase (scrB); and the third, a regulatory mutant, expressed both of these functions constitutively (scrR). In a strain harboring pUR400, both transport and sucrose-6-phosphate hydrolase were inducible by fructose, sucrose, and raffinose; if a scrB mutant was used, fructose was the only inducer. These data suggested that fructose or a derivative acted as an endogenous inducer. Sucrose transport and sucrose-6-phosphate hydrolase were subject to catabolite repression; these two functions were not expressed in an E. coli host (of pUR400) deficient in the adenosine 3-,5'-phosphate receptor protein. Sucrose uptake (apparent Km = 10 microM) was dependent on the scrA gene product and on the phosphoenolpyruvate-dependent sugar:phosphotransferase system (PTS) of the host. The product of sucrose uptake (via group translocation) was identified as sucrose-6-phosphate, phosphorylated at C6 of the glucose moiety. Intracellular sucrose-6-phosphate hydrolase catalyzed the hydrolysis of sucrose-6-phosphate (Km = 0.17 mM), sucrose (Km = 60 mM), and raffinose (Km = 150 mM). The active enzyme was shown to be a dimer of Mr 110,000.  相似文献   

20.
We have investigated the crr gene of Streptomyces coelicolor that encodes a homologue of enzyme IIAGlucose of Escherichia coli, which, as a component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) plays a key role in carbon regulation by triggering glucose transport, carbon catabolite repression, and inducer exclusion. As in E. coli, the crr gene of S. coelicolor is genetically associated with the ptsI gene that encodes the general phosphotransferase enzyme I. The gene product IIACrr was overproduced, purified, and polyclonal antibodies were obtained. Western blot analysis revealed that IIACrr is expressed in vivo. The functionality of IIACrr was demonstrated by phosphoenolpyruvate-dependent phosphorylation via enzyme I and the histidine-containing phosphoryl carrier protein HPr. Phosphorylation was abolished when His72, which corresponds to the catalytic histidine of E. coli IIAGlucose, was mutated. The capacity of IIACrr to operate in sugar transport was shown by complementation of the E. coli glucose-PTS. The striking functional resemblance between IIACrr and IIAGlucose was further demonstrated by its ability to confer inducer exclusion of maltose to E. coli. A specific interaction of IIACrr with the maltose permease subunit MalK from Salmonella typhimurium was uncovered by surface plasmon resonance. These data suggest that this IIAGlucose-like protein may be involved in carbon metabolism in S. coelicolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号