首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Equine protozoal myeloencephalitis (EPM) due to Sarcocystis neurona infection is 1 of the most common neurologic diseases in horses in the United States. The mechanisms by which most horses resist disease, as well as the possible mechanisms by which the immune system may be suppressed in horses that develop EPM, are not known. Therefore, the objectives of this study were to determine whether horses experimentally infected with S. neurona developed suppressed immune responses. Thirteen horses that were negative for S. neurona antibodies in serum and cerebrospinal fluid (CSF) were randomly assigned to control (n = 5) or infected (n = 8) treatment groups. Neurologic exams and cerebrospinal fluid analyses were performed prior to, and following, S. neurona infection. Prior to, and at multiple time points following infection, immune parameters were determined. All 8 S. neurona-infected horses developed clinical signs consistent with EPM, and had S. neurona antibodies in the serum and CSF. Both infected and control horses had increased percentages (P < 0.05) of B cells at 28 days postinfection. Infected horses had significantly decreased (P < 0.05) proliferation responses as measured by thymidine incorporation to nonspecific mitogens phorbol myristate acetate (PMA) and ionomycin (I) as soon as 2 days postinfection.  相似文献   

3.
Intraspleen DNA inoculation elicits protective cellular immune responses   总被引:2,自引:0,他引:2  
DNA immunization or inoculation is a recent vaccination method that induces both humoral and cellular immune responses in a range of hosts. Independent of the route or site of vaccination, the transfer of antigen-presenting cells (APC) or antigens into lymphoid organs is necessary. The aim of this investigation was to test whether intraspleen (i.s.) DNA inoculation is capable of inducing a protective immune response. We immunized mice by a single i.s. injection of a DNA construct expressing the immunoglobulin (Ig) heavy-chain variable domain (VH) in which the complementarity-determining regions (CDR) had been replaced by a Taenia crassiceps T-cell epitope. In these mice, immune responses and protective effects elicited by the vaccine were measured. We have shown here for the first time that i.s. DNA inoculation can induce protective cellular immune responses and activate CD8(+) T cells. Also, Ig V(H) appeared to be the minimal delivery unit of "antigenized" Ig capable of inducing T-cell activation in a lymphoid organ. The strategy of introducing T-cell epitopes into the molecular context of the V(H) domain in combination with i.s. DNA immunization could have important implications and applications for human immunotherapy.  相似文献   

4.
Cell-mediated immune responses in mice infected with fonsecaea pedrosoi   总被引:4,自引:1,他引:3  
Time course of cellular and humoral immune responses in mice infected with Fonsecaea pedrosoi was investigated by using an antigen prepared from culture filtrate of this fungus. Mice were infected by intravenous injection with yeast-like cells of the fungus. Viable fungus was recovered from the brain of the infected mice until the 36th day after inoculation, and from the other organs examined until 14th to 16th day. Inflammatory lesions were observed in the brain, lung, heart, liver, spleen, kidney and intestine during the first 30 days after inoculation. Macrophage migration inhibition factor response in these mice was insignificant until 8 days after inoculation. A significant response was developed at day 10 and persisted until day 63. This response returned negative by 95 days after inoculation. Lymphocyte transformation response of these mice was negative until 4 days after inoculation. At day 6 blastogenic index increased to 1.5, and at day 10, 14 and 16 the indices were 1.8, 2.4 and 1.7 respectively. Precipitin response to this fungus could not be detected in these mice until 16 days after inoculation. Positive results were obtained at day 21 and lasted until 51 days after inoculation. The precipitin titers, however, did not exceed one fold in any of these mice.  相似文献   

5.
Profound alterations in humoral and cellular immune responses are a hallmark of aging, and understanding the immunobiology of aging is key to the success of preventive vaccination strategies. With aging, while recall or memory responses to influenza viral antigens for the most part remained unaltered, primary immune responses are severely impaired. The impaired primary responses are partly due to a lack of costimulation, as providing costimulation at the time of induction of primary immune responses against influenza virus vaccine partially reversed aged-related immune dysfunction and conferred enhanced protection. Inclusion of immunomodulators that up-regulate the expression of costimulatory molecules must be considered to improve the efficacy of vaccination in the elderly, particularly to novel immunogens.  相似文献   

6.
Immune memory is the foundation of the practise of vaccination. Research on the molecular and cellular events leading to generation and development of memory T and B lymphocytes explain why there are heightened secondary immune responses after an initial encounter with antigen. In this review, we discuss how clonal expansion, targeted tissue localisation, more efficient antigen recognition and more proficient effector functions contribute to the improved effectiveness of memory cells. Despite the enhanced efficacy of memory cells and the recall immune response, there are numerous experimental and empirical examples in which protection provided by vaccines are short-lived, particularly against pathogens that replicate and cause pathology at their site of entry. In the absence of active immune effector activities, the ability of memory cells to respond quickly enough to control this type of infection is limited. The protective efficacy of bovine herpes virus-1 vaccines in experimental and field challenge conditions are used to illustrate the concept that full protection from disease conferred by vaccination requires the presence of active immune effector mechanisms. Thus, regardless of the many successful technological advances in vaccine design and better understanding of mechanisms underlining induction of memory responses by vaccination, we should recognise that vaccine immunoprophylaxis has limitations. Expectations for vaccines should be realistic and linked to the understanding of host immune responses and knowledge regarding the pathogen and disease pathogenesis.  相似文献   

7.
Human enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is also associated with serious neurological diseases in children. Currently, there are no effective antiviral drugs or vaccines against EV71 infection. VP1, one of the major immunogenic capsid proteins of EV71, is widely considered to be the candidate antigen for an EV71 vaccine. In this study, VP1 of EV71 was expressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris, and purified by Ni–NTA affinity chromatography. Immunogenicity and vaccine efficacy of the recombinant VP1 were assessed in mouse models. The results showed that the recombinant VP1 could efficiently induce anti-VP1 antibodies in BALB/c mice, which were able to neutralize EV71 viruses in an in vitro neutralization assay. Passive protection of neonatal mice further confirmed the prophylactic efficacy of the antisera from VP1 vaccinated mice. Furthermore, VP1 vaccination induced strong lymphoproliferative and Th1 cytokine responses. Taken together, our study demonstrated that the yeast-expressed VP1 protein retained good immunogenicity and was a potent EV71 vaccine candidate.  相似文献   

8.
Apolipoprotein E (apoE) is a 34 kDa glycosylated protein with multiple biological properties. In addition to its role in cholesterol transport, apoE has in vitro immunomodulatory properties. Recent data suggest that these immunomodulatory effects of apoE may be biologically relevant, and apoE-deficient mice have altered immune responses after bacterial inoculation and increased susceptibility to endotoxemia induced by lipopolysaccharide (LPS). To better understand the mechanism by which apoE-modulates immune responses, we tested the role of human apoE isoforms in assays of human T cell proliferation, and analyzed the immune responses of apoE-deficient mice. Both the E3 and E4 isoforms of apoE induced similar suppression of human lymphocyte function in assays of T cell proliferation, including mitogenic responses to phytohaemagglutin (PHA), stimulation of the T cell receptor with alphaCD3, and antigen-specific response to tetanus toxoid. ApoE-deficient mice showed no quantitative differences in thymic, splenic, or bone marrow lymphocyte populations, nor were there in vitro abnormalities in splenocyte proliferation after stimulation with alphaCD3 to suggest an inherent T cell defect in apoE-deficient mice. ApoE deficient animals, however, had significantly higher levels of antigen-specific IgM after immunization with tetanus toxoid, and impaired delayed type hypersensitivity responses as compared to control C57-BL/6 mice.These results support a growing body of evidence demonstrating an interplay between lipid metabolism and immune responses, and suggest that apoE plays a biologically relevant role in regulating humoral and cell-mediated immunity.  相似文献   

9.
Antiviral immune responses in Itk-deficient mice.   总被引:1,自引:0,他引:1       下载免费PDF全文
Mice lacking Itk, a T-cell-specific protein tyrosine kinase, have reduced numbers of T cells and reduced responses to allogeneic major histocompatibility molecules. This study analyzed antiviral immune responses in mice deficient for Itk. Primary cytotoxic T-lymphocyte (CTL) responses were analyzed after infection with lymphocytic choriomeningitis virus (LCMV), vaccinia virus (VV), and vesicular stomatitis virus (VSV). Ex vivo CTL activity was consistently reduced by a factor of two to six for the different viruses. CTL responses after restimulation in vitro were similarly reduced unless exogenous cytokines were added. In the presence of interleukin-2 or concanavalin A supernatant, Itk-deficient and control mice responded similarly. Interestingly, while LCMV was completely eliminated by day 8 in both Itk-deficient and control mice, VV cleared from itk-/- mice with delayed kinetics. Antibody responses were evaluated after VSV infection. Both the T-cell-independent neutralizing immunoglobulin M (IgM) and the T-cell-dependent IgG responses were similar in Itk-deficient and control mice. Taken together, the results show that CTL responses are reduced in the absence of Itk whereas antiviral B-cell responses are not affected.  相似文献   

10.
11.
Summary In the present study we investigated some of the physicochemical properties of macrophage-activating factor(s) (MAF) produced by the tumor-immune Lyt-1+2 T cell subset. Supernatant from mixed culture of spleen and lymph node cells, obtained from C3H/HeN mice immunized with syngeneic MH134 hepatoma or MCH-1-A1 fibrosarcoma, with the corresponding tumor cells exhibited the capability of activating peritoneal exudate macrophages to exert their cytostatic and cytolytic activities on tumor cells. Such MAF production was abolished by treatment of tumor-immune spleen and lymph node cells with anti-Thy-1.2 or anti-Lyt-1.1 antibody plus complement (C) before culturing. Anti-Lyt-2.1 and/or anti-asialo GM1 plus C treatment, however, had only marginal effect on the generation of MAF by these cells, despite the complete disappearance of natural killer (NK) cell activity of spleen and lymph node cells after the treatment with anti-asialo GM1 plus C. Thus, the tumor-specific Lyt-1+2 T cell subset could fulfill a crucial role in generating MAF without the support of NK cells. The MAF activity was heat, acid, and trypsin sensitive. On Sephacryl S-300 column, MAF activity was eluated in a broad single peak around a molecular weight (m.w.) of 70,000 daltons. Antiviral activity was detected in the concentrated pool of MAF-containing fractions from Sephacryl S-300. Gel permeation analysis using HPLC also showed a coincident peak of MAF and antiviral activities at a m.w. of approximately 70,000 daltons. In addition, MAF activity was almost completely neutralized by incubation with rabbit antiserum against recombinant murine -interferon (IFN). Taken together, these results indicate that MAF generated by tumor-immune Lyt-1+2 T cell subset is closely related to IFN.  相似文献   

12.
Sialylation of tumor cells is involved in various aspects of their malignancy (proliferation, motility, invasion, and metastasis); however, its effect on the process of immunoediting that affects tumor cell immunogenicity has not been studied. We have shown that in mice with impaired immunoediting, such as in IL-1α(-/-) and IFNγ(-/-) mice, 3-methylcholanthrene-induced fibrosarcoma cells are immunogenic and concomitantly bear low levels of surface sialylation, whereas tumor cells derived from wild type mice are nonimmunogenic and bear higher levels of surface sialylation. To study immune mechanisms whose interaction with tumor cells involves surface sialic acid residues, we used highly sialylated 3-methylcholanthrene-induced nonimmunogenic fibrosarcoma cell lines from wild type mice, which were treated with sialidase to mimic immunogenic tumor cell variants. In vivo and in vitro experiments revealed that desialylation of tumor cells reduced their growth and induced cytotoxicity by NK cells. Moreover, sialidase-treated tumor cells better activated NK cells for IFN-γ secretion. The NKG2D-activating receptor on NK cells was shown to be involved in interactions with desialylated ligands on tumor cells, the nature of which is still not known. Thus, the degree of sialylation on tumor cells, which is selected during the process of immunoediting, has possibly evolved as an important mechanism of tumor cells with low intrinsic immunogenicity or select for tumor cells that can evade the immune system or subvert its function. When immunoediting is impaired, such as in IFN-γ(-/-) and IL-1α(-/-) mice, the overt tumor consists of desialylayed tumor cells that interact better with immunosurveillance cells.  相似文献   

13.
Long-lasting protective antibody is not normally generated in children following primary respiratory syncytial virus (RSV) infection, frequently leading to reinfection. We used the BALB/c mouse model to examine the role of the nasal-associated lymphoid tissue and the bone marrow in the generation of RSV-specific long-lasting plasma cells, with a view to further understanding the mechanisms responsible for the poorly sustained RSV antibody levels following primary infection. We show here that substantial numbers of RSV-specific plasma cells were generated in the bone marrow following challenge, which were maintained thereafter. In contrast, in the nasal-associated lymphoid tissue, RSV-specific plasma cell numbers waned quickly both after primary infection and after challenge and were not maintained at a higher level after boosting. These data indicate that the inability to generate a robust local mucosal response in the nasal tissues may contribute substantially to the likelihood of subsequent reinfection and that the presence of serum anti-RSV antibody without local protection is not enough to protect against reinfection.  相似文献   

14.
The age-related decline in immunity reduces the effectiveness of vaccines in older adults. Immunosenescence is associated with chronic, low-grade inflammation, and the accumulation of senescent cells. The latter express Bcl-2 family members (providing resistance to cell death) and exhibit a pro-inflammatory, senescence-associated secretory phenotype (SASP). Preexisting senescent cells cause many aging-related disorders and therapeutic means of eliminating these cells have recently gained attention. The potential consequences of senescent cell removal on vaccine efficacy in older individuals are still ignored. We used the Bcl-2 family inhibitor ABT-263 to investigate the effects of pre-vaccination senolysis on immune responses in old mice. Two different ovalbumin (OVA)-containing vaccines (containing a saponin-based or a CpG oligodeoxynucleotide adjuvant) were tested. ABT-263 depleted senescent cells (apoptosis) and ablated the basal and lipopolysaccharide-induced production of SASP-related factors in old mice. Depletion of senescent cells prior to vaccination (prime/boost) had little effect on OVA-specific antibody and T-cell responses (slightly reduced and augmented, respectively). We then used a preclinical melanoma model to test the antitumor potential of senolysis before vaccination (prime with the vaccine and OVA boost by tumor cells). Surprisingly, ABT-263 treatment abrogated the vaccine's ability to protect against B16 melanoma growth in old animals, an effect associated with reduced antigen-specific T-cell responses. Some, but not all, of the effects were age-specific, which suggests that preexisting senescent cells were partly involved. Hence, depletion of senescent cells modifies immune responses to vaccines in some settings and caution should be taken when incorporating senolytics into vaccine-based cancer therapies.  相似文献   

15.
Elderly humans over 65 years old are at great risk to pathogenesis by influenza virus infection. However, although influenza vaccines provide effective protection in healthy young adults, protection of elderly adults is substantially lower even with a good match between the vaccine and the circulating influenza virus. To gain insight of the underlying mechanism for the reduced immunogenicity of influenza vaccines in the aged population, we investigated immunogenicity of influenza virus-like particle vaccines in aged mice, which represent a useful model for studying aging associated impairment in immune responses. Specifically, we investigated the effect of inhibiting regulatory T cells in aged mice on induction of protective immune responses by influenza vaccines. Our results showed that injecting anti-CD25 antibodies could down-regulate CD25 on the surface of regulatory T cells and significantly increase the levels of antibody responses induced by VLP immunization in aged mice. Further, the profiles of antibody responses were also changed towards Th1 type by regulatory T cell blockage in aged mice. Moreover, aged mice that were treated by anti-CD25 antibodies prior to vaccination were more effectively protected against lethal influenza virus challenge.  相似文献   

16.
The global Zika virus (ZIKV) outbreak and its link to foetal and newborn microcephaly and severe neurological complications in adults call for the urgent development of ZIKV vaccines. In response, we developed a subunit vaccine based on the ZIKV envelope (E) protein and investigated its immunogenicity in mice. Transient expression of ZIKV E (zE) resulted in its rapid accumulation in leaves of Nicotiana benthamiana plants. Biochemical analysis revealed that plant‐produced ZIKV E (PzE) exhibited specific binding to a panel of monoclonal antibodies that recognize various zE conformational epitopes. Furthermore, PzE can be purified to >90% homogeneity with a one‐step Ni2+ affinity chromatography process. PzE are found to be highly immunogenic, as two doses of PzE elicited both potent zE‐specific antibody and cellular immune responses in mice. The delivery of PzE with alum induced a mixed Th1/Th2 immune response, as the antigen‐specific IgG isotypes were a mixture of high levels of IgG1/IgG2c and splenocyte cultures from immunized mice secreted significant levels of IFN‐gamma, IL‐4 and IL‐6. Most importantly, the titres of zE‐specific and neutralizing antibodies exceeded the threshold that correlates with protective immunity against multiple strains of ZIKV. Thus, our results demonstrated the feasibility of plant‐produced ZIKV protein antigen as effective, safe and affordable vaccines against ZIKV.  相似文献   

17.
To characterize the induction of antigen-specific immune response mediated by baculovirus, vectors expressing the E2 glycoprotein of hepatitis C virus or the carcinoembryonic antigen (CEA) under the control of the cytomegalovirus immediate-early promoter-enhancer were constructed. Additionally, a baculovirus vector encoding the E2 glycoprotein (Bac-G-E2) and expressing vesicular stomatitis virus glycoprotein (VSV-G) in the viral envelope was generated by inserting the VSV-G coding sequence downstream of the polyhedrin promoter. Mice were subjected to intramuscular, intranasal, or subcutaneous inoculations with Bac-E2 and the cellular immune response was monitored by ELISPOT and intracellular staining. Additionally, humoral response was monitored by titrating anti-E2 antibodies. Induction of a measurable anti-E2 T-cell response was observed only after intramuscular injection and was predominantly CD8(+) specific. The immunogenic properties of baculovirus as vaccine vector were not restricted to E2 because a CEA-specific CD4(+) T-cell response was observed upon intramuscular injection of Bac-CEA. Interestingly, the Bac-G-E2 vector was shown to be a more efficient immunogen than Bac-E2, in view of the 10-fold difference in the minimal dose required to elicit a measurable T-cell response upon intramuscular injection. Induction of inflammatory cytokines such as gamma interferon, tumor necrosis factor alpha, and interleukin-6 was detected as early as 6 h postinjection of Bac-G-E2. Most importantly, both vectors elicited CD8(+) T cells with effector function capable of lysing target cells loaded with a hepatitis C virus-specific epitope. Additionally, enhanced NK cytolytic activity was detected in immunized mice. Thus, these results further demonstrate that baculovirus may be considered a useful vector for gene therapy.  相似文献   

18.
Human-like immune responses in CD46 transgenic mice   总被引:2,自引:0,他引:2  
Neisseria meningitidis is a major cause of sepsis and/or meningitis. These bacteria normally cause disease only in humans, however, mice expressing human CD46 are susceptible to meningococcal disease. To explain the sensitivity of CD46 transgenic mice to meningococci, we evaluated early immune responses. Stimulation of TNF, IL-6, and IL-10 was stronger in CD46 transgenic mice compared with nontransgenic mice, and resembled human responses. In CD46 transgenic mice, bacterial clearance in blood started at later time points, and neutrophil numbers in blood were lower compared with nontransgenic mice. Further, elevated levels of activated microglia cells and cyclooxygenase-2 were observed in brain of infected CD46 transgenic mice. Intraperitoneal administration of meningococci lead to increased levels of macrophages only in the i.p. cavity of CD46 transgenic mice. Most of the responses were impaired or absent using LPS-deficient meningococci, showing the importance of LPS in the early immune response to meningococcal infection. Taken together, these data demonstrate that responses in mice expressing human CD46 mimic human meningococcal disease in many aspects, and demonstrate novel important links between CD46 and the innate immune system.  相似文献   

19.
The use of chimeric virus-like particles represents a new strategy for delivering tumor antigens to the immune system for the initiation of antitumor immune responses. Immunization of DBA/2 mice with the P1A peptide derived from the P815 tumor-associated antigen P1A induced specific T-cell tolerance, resulting in progression of a regressor P815 cell line in all animals. However, immunization with a human papillomavirus type 16 L1 virus-like particle containing the P1A peptide in the absence of adjuvant induced a protective immune response in mice against a lethal tumor challenge with a progressor P815 tumor cell line. Additionally, we demonstrated that these chimeric virus-like particles could be used therapeutically to suppress the growth of established tumors, resulting in a significant survival advantage for chimeric virus-like particle-treated mice compared with untreated control mice. Chimeric virus-like particles can thus be used as a universal delivery vehicle for both tolerizing and antigenic peptides to induce a strong protective and therapeutic antigen-specific antitumor immune response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号