首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W C Lam  D H Tsao  A H Maki  K A Maegley  N O Reich 《Biochemistry》1992,31(43):10438-10442
The interactions of an arsenic (III) reagent, (CH3)2AsSCH2CONH2, with two Escherichia coli RI methyltransferase mutants, W183F and C223S, have been studied by phosphorescence, optically detected magnetic resonance, and fluorescence spectroscopy. The phosphorescence spectrum of the W183F mutant containing only one tryptophan at position 225 reveals a single 0,0-band that is red-shifted by 9.8 nm upon binding of As(III). Fluorescence titration of W183F with (CH3)2AsSCH2CONH2 produces a large tryptophan fluorescence quenching. Analysis of the quenching data points to a single high-affinity As(III) binding site that is associated with the fluorescence quenching. Triplet-state kinetic measurements performed on the perturbed tryptophan show large reductions in the lifetimes of the triplet sublevels, especially that of the T chi sublevel. As(III) binding to the enzyme at a site very close to the Trp225 residue induces an external heavy-atom effect, showing that the perturber atom is in van der Waals contact with the indole chromophore. In the case of the C223S mutant, a single tryptophan 0,0-band also is observed in the phosphorescence spectrum, but no change occurs upon addition of the As(III) reagent. Fluorescence titration of C223S with As(III) shows essentially no quenching of tryptophan fluorescence, in contrast with W183F. These results, along with previous triplet-state and biochemical studies on the wild-type enzyme [Tsao, D. H.H., & Maki, A. H. (1991) Biochemistry 30, 4565-4572], show that As(III) binds with high affinity to the Cys223 residue and that the Trp225 side chain is located close enough to that of Cys223 to produce a heavy-atom perturbation when As(III) is bound.  相似文献   

2.
L H Zang  S Ghosh  A H Maki 《Biochemistry》1988,27(20):7820-7825
Triplet-state energies, zero-field splittings (ZFS), and total decay rate constants of the individual triplet-state sublevels of the tryptophan (Trp) residues located at positions 126, 138, and 158 in bacteriophage T4 lysozyme have been determined by using low-temperature phosphorescence and optical detection of magnetic resonance spectroscopy in zero applied magnetic field. An investigation of spectral and kinetic properties of individual Trp residues was facilitated by measurements on point-mutated proteins containing two Trp----Tyr substitutions. We find that the phosphorescence lifetime of the buried Trp-138 is considerably shorter than those of the solvent-exposed Trp residues. CH3HgII binding to cysteine residues in T4 lysozyme selectively perturbs the triplet state of Trp-158 by means of an external heavy-atom effect. In contrast with the previous observation of selective x-sublevel perturbation in the Trp-CH3Hg complex, the radiative character of the z sublevel (z is the out-of-plane axis) is selectively enhanced due to the heavy-atom perturbation of Trp-158. The observed pattern of radiative and total sublevel decay constants of the perturbed Trp is attributed to a special orientation of the Hg atom with respect to the indole plane.  相似文献   

3.
M I Khamis  A H Maki 《Biochemistry》1986,25(20):5865-5872
Optical detection of triplet-state magnetic resonance (ODMR) is employed to study the complexes formed between gene 32 protein (GP32), a single-stranded DNA-binding protein from bacteriophage T4, and the heavy-atom-derivatized polynucleotides poly(5-HgU) and poly(5-BrU). The triplet-state properties of some of the tryptophan (Trp) residues in the complexes are dramatically different from those in the free protein, in that they are subject to an external heavy-atom effect. Direct evidence for the presence of a heavy-atom effect, and hence a close-range interaction between mercurated or brominated nucleotide bases and Trp residues in the complex, is provided by the observation of the zero-field (D) + (E) ODMR transition of Trp, which is not normally observed in the absence of a heavy-atom perturbation. The amplitude-modulated phosphorescence-microwave double-resonance (AM-PMDR) technique is employed to selectively capture the phosphorescence spectrum originating from the heavy-atom-perturbed Trp residue(s) in the GP32-poly(5-HgU) complex. Arguments based on our experimental results lead to the conclusion that the heavy-atom perturbation arises from aromatic stacking interactions between Trp and mercurated bases. Wavelength-selected ODMR measurements reveal the existence of two environmentally distinct and spectrally different types of Trp in GP32. One of these types is perturbed selectively by the heavy atom and hence undergoes stacking interactions with the heavy-atom-derivatized bases of the polynucleotide while the second type of Trp residue is unaffected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
S Y Mao  A H Maki  G H de Haas 《Biochemistry》1986,25(10):2781-2786
The direct binding of porcine pancreatic phospholipase A2 and its zymogen to 1,2-bis(heptanylcarbamoyl)-rac-glycerol 3-sulfate was studied by optical detection of triplet-state magnetic resonance spectroscopy in zero applied magnetic field. The zero-field splittings of the single Trp3 residue undergo significant changes upon binding of phospholipase A2 to lipid. Shifts in zero-field splittings, characterized mainly by a reduction of the E parameter from 1.215 to 1.144 GHz, point to large changes in the Trp3 local environment which accompany the complexing of phospholipase A2 with lipid. This may be attributed to Stark effects caused by the binding of a charged group near Trp3 in the enzyme-lipid complex. The cofactor, Ca2+, which is strongly bound to the enzyme active site, has an influence on the bonding, as reflected by smaller zero-field splitting shifts. A relatively small change in the Trp environment was observed for the interaction of the zymogen with lipid.  相似文献   

5.
The presence, microenvironment, and proximity of an essential Trp with the essential His and Cys residues in the active site of an alkaline protease have been demonstrated for the first time using chemical modification, chemo-affinity labeling, and fluorescence spectroscopy. Kinetic analysis of the N-bromosuccinimide- (NBS) or p-hydroxymercuribenzoate- (PHMB) modified enzyme from Conidiobolus sp. revealed that a single Trp and Cys are essential for activity in addition to the Asp, His, and Ser residues of the catalytic triad. Full protection by casein against inactivation of the enzyme by NBS and quenching of Trp fluorescence upon binding of the enzyme with NBS, substrate (sAAPF-pNA), or inhibitor (SSI) confirmed participation of the Trp residue at the substrate/inhibitor binding site of the alkaline protease. Comparison of the K(sv) values for the charged quenchers CsCI (1.66) and KI (7.0) suggested that the overall Trp microenvironment in the protease is electropositive. The proximity of Trp with His was demonstrated by the sigmoidal shape of the pH-dependent fluorometric titration curve with a pK(F) of 6.1. The vicinity of Trp with Cys was indicated by resonance energy transfer between the intrinsic fluorophore (Trp) and 5-iodoacetamide-fluorescein labeled Cys (extrinsic fluorophore). Our results on the proximity of Trp with essential His and Cys thus confirm the presence of Trp in the active site of the alkaline protease.  相似文献   

6.
Five different cysteine-containing mutants of the lysozyme from bacteriophage T4 were used to explore the feasibility of using site-directed mutagenesis to generate isomorphous heavy-atom derivatives for protein crystallography. Cysteines 54 and 97, present in wild-type lysozyme, can be readily reacted with mercuric ion to produce an excellent isomorphous heavy-atom derivative. Mutants with an additional cysteine at position 86, 146, 153 or 157, or with Cys 97 replaced by Val, were engineered by site-directed mutagenesis. The mutant lysozyme Thr 157----Cys reacts with mercuric chloride to give an excellent new derivative although Cys 157 is only approximately 60% substituted with the heavy atom. The cysteine at position 146 is largely buried but reacts readily with mercuric chloride. In this case the isomorphism is poor and the resultant derivative is of marginal quality. Cys 153 reacts rapidly with mercuric ion but the derivative crystals do not diffract. The mutant Pro 86----Cys does not yield a particularly good heavy-atom derivative. This is due in part to a loss of isomorphism associated with the mutation. In addition, Cys 86 shows very little reactivity towards mercurials even though it is fully exposed to solvent. The mutation Cys 97----Val was used to explore the possibility of creating an independent derivative by deleting a heavy-atom site already present in wild-type lysozyme. In all cases that were tested, the quality of the heavy-atom derivative was improved by using as an isomorphous pair mercury-substituted mutant versus non-substituted mutant rather than mercury-substituted mutant versus (non-substituted) wild-type lysozyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
S Ghosh  L H Zang  A H Maki 《Biochemistry》1988,27(20):7816-7820
Two spectroscopically distinct types of tyrosine (Tyr) residues in triply point mutated bacteriophage T4 lysozyme, which contains no tryptophan (Trp), have been detected by optical detection of triplet-state magnetic resonance (ODMR) spectroscopy. Their triplet states are characterized by similar E but different D values. The Tyr site which exhibits the lower D value and has the red-shifted phosphorescence origin is quenched by energy transfer to Trp and has D and E values comparable to previously studied Tyr residues. The blue-shifted Tyr site, which is not quenched by Trp, exhibits a larger D value that has been found previously. Calculation of energy-transfer efficiencies of Tyr-Trp pairs based on the crystal structure of the native enzyme provides a possible assignment of Tyr sites to the two different spectral types.  相似文献   

8.
Fatty acid ethyl ester synthase-III metabolizes both ethanol and carcinogens. Structure-function studies of the enzyme have not been performed in relation to site specific mutagenesis. In this study, three residues (Gly 32, Cys 39 and His 72) have been mutated to observe their role in enzyme activity. Gly to Gln, Cys to Trp and His to Ser mutations did not affect fatty acid ethyl ester synthase activity, but His to Ser mutant had less than 9% of control glutathione S-transferase activity. The apparent loss of transferase activity reflected a 28 fold weaker binding constant for glutathione. Thus, this study indicates that Gly and Cys may not be important for synthase or transferase activities however, histidine may play a role in glutathione binding, but it is not an essential catalytic residue of glutathione S-transferase or for fatty acid ethyl ester synthase activity.  相似文献   

9.
10.
The structure of a derivative of hen egg-white lysozyme (EC 3.2.1.17) modified by N-bromosuccinimide at Trp62 has been studied by both 1H nuclear magnetic resonance spectroscopy and X-ray crystallography. It was shown that this modification, changing the tryptophan residue to an oxindolealanine2 residue, only causes minor structural changes at the site of the modification, and that the overall structure of the native enzyme is maintained in the derivative. Both diastereomers of the oxindolealanine-62 lysozyme were observed by the two methods employed, in accordance with previous observations (Norton & Allerhand, 1976). The pK values of the catalytically important carboxyl groups of Glu35 and Asp52 were identical in the native enzyme and its derivative. However, the modified enzyme is virtually inactive in the hydrolysis of the cell-wall mucopolysaccharide of Micrococcus lysodeikticus. The binding of N-acetylglucosamine oligosaccharides to both native lysozyme and Ox-62 lysozyme was studied by nuclear magnetic resonance spectroscopy, observing the perturbations on the lysozyme 1H n.m.r. resonances, and differences in the perturbations of the two systems demonstrated that binding of (GlcNAc)3 in particular was not identical in the two systems. The structure of Ox-62 lysozyme-(GlcNAc)3 was studied by X-ray crystallography and it was shown that only two GlcNAc residues make contact with the enzyme, binding the reducing end residue in a similar mode as the α-anomeric form of GlcNAc binds to the native enzyme (Blake et al., 1967a). On the basis of the results obtained by X-ray crystallography and 1H n.m.r. spectroscopy, the lack of enzymatic activity of the Ox-62 lysozyme arises from the obstruction by the oxindolealanine residue of sub-site B of the active site, preventing productive binding of the substrate.  相似文献   

11.
Room temperature fluorescence and low-temperature phosphorescence studies of the association of p10, a basic low molecular weight single-stranded DNA binding protein isolated from murine leukemia viruses, point to the involvement of its single tryptophan residue in a close-range interaction with single-stranded polynucleotides. Optically detected triplet-state magnetic resonance (ODMR) techniques applied to the complex of p10 protein with the heavy atom derivatized polynucleotide poly(5-HgU) demonstrate the occurrence of stacking interactions of Trp35 with nucleic acid bases, thus agreeing with earlier reports that this residue is involved in the binding process [Karpel, R. L., Henderson, L. E., & Oroszlan, S. (1987) J. Biol. Chem. 262, 4961-4967].  相似文献   

12.
cAMP receptor protein (CRP), allosterically activated by cAMP, regulates the expression of several genes in Escherichia coli. As binding of cAMP leads to undefined conformational changes in CRP, we performed a steady-state and time-resolved fluorescence study to show how the binding of the ligand influences the structure and dynamics of the protein. We used CRP mutants containing a single tryptophan residue at position 85 or 13, and fluorescently labeled with 1,5-I-AEDANS attached to Cys178. Binding of cAMP in the CRP-(cAMP)2 complex leads to changes in the Trp13 microenvironment, whereas its binding in the CRP-(cAMP)4 complex alters the surroundings of Trp85. Time-resolved anisotropy measurements indicated that cAMP binding in the CRP-(cAMP)2 complex led to a substantial increase in the rotational mobility of the Trp13 residue. Measurement of fluorescence energy transfer (FRET) between labeled Cys178 and Trp85 showed that the binding of cAMP in the CRP-(cAMP)2 complex caused a substantial increase in FRET efficiency. This indicates a decrease in the distance between the two domains of the protein from 26.6 A in apo-CRP to 18.7 A in the CRP-(cAMP)2 complex. The binding of cAMP in the CRP-(cAMP)4 complex resulted in only a very small increase in FRET efficiency. The average distance between the two domains in CRP-DNA complexes, possessing lac, gal or ICAP sequences, shows an increase, as evidenced by the increase in the average distance between Cys178 and Trp85 to approximately 20 A. The spectral changes observed provide new structural information about the cAMP-induced allosteric activation of the protein.  相似文献   

13.
Trypanosoma brucei, the causative agent of African sleeping sickness, encodes three nearly identical genes for cysteine-homologues of the selenocysteine-containing glutathione peroxidases. The enzymes, which are essential for the parasites, lack glutathione peroxidase activity but catalyse the trypanothione/Tpx (tryparedoxin)-dependent reduction of hydroperoxides. Cys47, Gln82 and Trp137 correspond to the selenocysteine, glutamine and tryptophan catalytic triad of the mammalian selenoenzymes. Site-directed mutagenesis revealed that Cys47 and Gln82 are essential. A glycine mutant of Trp137 had 13% of wild-type activity, which suggests that the aromatic residue may play a structural role but is not directly involved in catalysis. Cys95, which is conserved in related yeast and plant proteins but not in the mammalian selenoenzymes, proved to be essential as well. In contrast, replacement of the highly conserved Cys76 by a serine residue resulted in a fully active enzyme species and its role remains unknown. Thr50, proposed to stabilize the thiolate anion at Cys47, is also not essential for catalysis. Treatment of the C76S/C95S but not of the C47S/C76S double mutant with H2O2 induced formation of a sulfinic acid and covalent homodimers in accordance with Cys47 being the peroxidative active site thiol. In the wild-type peroxidase, these oxidations are prevented by formation of an intramolecular disulfide bridge between Cys47 and Cys95. As shown by MS, regeneration of the reduced enzyme by Tpx involves a transient mixed disulfide between Cys95 of the peroxidase and Cys40 of Tpx. The catalytic mechanism of the Tpx peroxidase resembles that of atypical 2-Cys-peroxiredoxins but is distinct from that of the selenoenzymes.  相似文献   

14.
Oxidation of the isolated catalytic domain B of xylanase C (XynC-B) from Fibrobacter succinogenes with N-bromosuccinimide (NBS) resulted in the modification of five of the seven Trp residues present in the enzyme. Hydrolytic activity of the enzyme was rapidly lost upon initiation of oxidation as a molar ratio of about two NBS molecules per molar equivalent of protein was sufficient to cause 50% inhibition of enzyme activity, and the addition of five molar equivalents of NBS resulted in less than 10% activity. Pre-incubation of XynC-B with the competitive inhibitor D-xylose resulted in the apparent protection of two Trp residues from oxidation. Xylose protection of the enzyme also resulted in a maintenance of activity, with 60% activity still evident after addition of 8-9 molar equivalents of NBS. This protection from inactivation was enhanced by the inclusion of xylohexaose in reaction mixtures. Under these conditions, however, a further Trp residue was protected from NBS oxidation. The three protected Trp residues were identified as Trp135, Trp161 and Trp202 by differential labelling and peptide mapping of NBS-oxidized preparations of the xylanase employing a combination of electrospray mass spectroscopic analysis and N-terminal sequencing. By analogy to the known structures of the family 11 xylanases, the fully conserved Trp202 residue is located on the only alpha-helix present in the enzymes, at the interface between it and the back of the beta-sheet which forms the active site cleft. Trp135 represents a highly conserved aromatic residue in family 11, but it is replaced with Thr in domain A of F. succinogenes xylanase C. To investigate the role of Trp135 in conferring the different activity profile of domain B relative to domain A, the Trp135Thr and Trp135Ala derivatives of domain B were prepared by site-directed mutagenesis. However, the kinetic parameters of the two domain B derivatives were not significantly different compared to the wild-type enzyme as reflected by K(M) and k(cat) values and product distribution profiles. Similar results were obtained with the Trp161Ala derivative of domain B, indicating that these two residues do not directly participate in the binding of substrate but likely form the foundation for binding subsite 2.  相似文献   

15.
B D Schlyer  A H Maki  E Hawrot 《FEBS letters》1992,297(1-2):87-90
Phosphorescence and optically detected magnetic resonance (ODMR) have been used to characterize two synthetic peptides, alpha 181-198 and alpha 185-196, of the major binding determinant of the alpha-acetylcholine receptor (AChR) of Torpedo californica and its interaction with alpha-bungarotoxin (BgTX) using Trp as an intrinsic probe. BgTX conformational changes are suggested upon complexation with the peptides. Methylmercury-modified peptides show conformational heterogeneity which brings some of the modified Cys residues into proximity of peptide Trp(s). These modified peptides, when bound to BgTX, undergo structural changes which remove the tagged Cys from its close contact with the Trp residue(s) of the peptide.  相似文献   

16.
Mani RS  Usova EV  Cass CE  Eriksson S 《Biochemistry》2006,45(11):3534-3541
Human deoxycytidine kinase (dCK) phosphorylates both pyrimidine and purine deoxynucleosides, including numerous nucleoside analogue prodrugs. Energy transfer studies of transfer between Trp residues of dCK and the fluorescent probe N-(1-pyrene)maleimide (PM), which specifically labels Cys residues in proteins, were performed. Two of the six Cys residues in dCK were labeled, yielding a protein that was functionally active. We determined the average distances between PM-labeled Cys residues and Trp residues in dCK in the absence and presence of various pyrimidine and purine nucleoside analogues with the Trp residues as energy donors and PM-labeled Cys residues as acceptors. The transfer efficiency was determined from donor intensity quenching and the F?rster distance R(0) at which the efficiency of energy transfer is 50%, which was 19.90 A for dCK-PM. The average distance R between the Trp residues and the labeled Cys residues in dCK-PM was 18.50 A, and once substrates bound, this distance was reduced, demonstrating conformational changes. Several of the Cys residues of dCK were mutated to Ala, and the properties of the purified mutant proteins were studied. PM labeled a single Cys residue in Cys-185-Ala dCK, suggesting that one of the two Cys residues labeled in wild-type dCK was Cys 185. The distance between the single PM-labeled Cys residue and the Trp residues in Cys-185-Ala dCK was 20.75 A. Binding of nucleosides had no effect on the pyrene fluorescence of Cys-185-Ala dCK, indicating that the conformational changes observed upon substrate binding to wild-type dCK-PM involved the "lid region" of which Cys 185 is a part. The substrate specificity of Cys-185-Ala dCK was altered in that dAdo and UTP were better substrates for the mutant than for the wild-type enzyme.  相似文献   

17.
The turnover of DNA-adenine-methylase of E. coli strongly decreases when the temperature is lowered. This has allowed us to study the binding of Dam methylase on 14 bp DNA fragments at 0 degrees C by gel retardation in the presence of Ado-Met, but without methylation taking place. The enzyme can bind non-specific DNA with low affinity. Binding to the specific sequence occurs in the absence of S-adenosyl-methionine (Ado-Met), but is activated by the presence of the methyl donor. The two competitive inhibitors of Ado-Met, sinefungin and S-adenosyl-homocysteine, can neither activate this binding to DNA by themselves, nor inhibit this activation by Ado-Met. This suggests that Ado-Met could bind to Dam methylase in two different environments. In one of them, it could play the role of an allosteric effector which would reinforce the affinity of the enzyme for the GATC site. The analogues can not compete for such binding. In the other environment Ado-Met would be in the catalytic site and could be exchanged by its analogues. We have also visualized conformational changes in Dam methylase induced by the simultaneous binding of Ado-Met and the specific target sequence of the enzyme, by an anomaly of migration and partial resistance to proteolytic treatment of the ternary complex Ado-Met/Dam methylase/GATC.  相似文献   

18.
Ag-NPA-1 (AgFABP), a 15 kDa lipid binding protein (LBP) from Ascaridia galli, is a member of the nematode polyprotein allergen/antigen (NPA) family. Spectroscopic analysis shows that Ag-NPA-1 is a highly ordered, alpha-helical protein and that ligand binding slightly increases the ordered secondary structure content. The conserved, single Trp residue (Trp17) and three Tyr residues determine the fluorescence properties of Ag-NPA-1. Analysis of the efficiency of the energy transfer between these chromophores shows a high degree of Tyr-Trp dipole-dipole coupling. Binding of fatty acids and retinol was accompanied by enhancement of the Trp emission, which allowed calculation of the affinity constants of the binary complexes. The distance between the single Trp of Ag-NPA-1 and the fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1- sulfonyl)amino]undecanoic acid (DAUDA) from the protein binding site is 1.41 nm as estimated by fluorescence resonance energy transfer. A chemical modification of the Cys residues of Ag-NPA-1 (Cys66 and Cys122) with the thiol reactive probes 5-({[(2-iodoacetyl)amino]ethyl}amino) naphthalene-1-sulfonic acid (IAEDANS) and N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD), followed by MALDI-TOF analysis showed that only Cys66 was labeled. The observed similar affinities for fatty acids of the modified and native Ag-NPA-1 suggest that Cys66 is not a part of the protein binding pocket but is located close to it. Ag-NPA-1 is one of the most abundant proteins in A. galli and it is distributed extracellularly mainly as shown by immunohistology and immunogold electron microscopy. This suggests that Ag-NPA-1 plays an important role in the transport of fatty acids and retinoids.  相似文献   

19.
Using a variety of synthetic analogs of porcine endothelin (pET), we have studied the effects of these analogs on receptor binding activity and cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat vascular smooth muscle cells (VSMC). Removal of C-terminal Trp21 residue, truncated derivatives pET(1-15) and (16-21), substitution of disulfide bond, Cys(3-11) or Cys(1-15), by Cys (Acm), all resulted in a complete loss of receptor binding activity and [Ca2+]i response, while N-terminal elongation of Lys-Arg residues, but not oxidation of Met7 residue, decreased receptor binding activity and [Ca2+]i response. [Cys1-15,Cys3-11]pET was far more potent than [Cys1-11,Cys3-15]pET in receptor binding and [Ca2+]i response. These data indicate that the C-terminal Trp21 as well as the proper double cyclic structure formed by the intramolecular disulfide bonds of the pET molecule are essential for receptor binding and subsequent [Ca2+]i increase in rat VSMC.  相似文献   

20.
Long-range effects and conformational flexibility of aldolase   总被引:1,自引:0,他引:1  
The conformational flexibility and long-range interactions in rabbit muscle aldolase induced by active-site ligand binding, cross-linking of the enzyme between Cys72 and Cys338, and removal of the C-terminal tyrosine residue were studied by following the changes in the microenvironments of Cys239 and Cys289 located outside the active site. It was found that substrates induced a conformational change in aldolase, which propagates from the active site to Cys239, which is located close to intersubunit contacts. The response of the enzyme is differential. Ligands having both C-1 and C-6 phosphates or C-1 phosphate only induce the enhancement of Cys239 reactivity, whereas those with C-6 phosphates only decrease Cys239 reactivity. This correlates well with a dramatic difference in kinetic parameters for a cleavage of fructose-1,6-P2 and fructose-1-P. Therefore, these changes can be interpreted as syncatalytic. Cross-linking of the aldolase subunit by an -S-S-bridge between Cys72 and Cys338 inactivates the enzyme, abolishes binding of active-site ligands, and induces a conformational change in the enzyme that can be detected far away (at Cys239 and Cys289) from the site of perturbation. Cys72 and Cys338 are not in the active site. This shows that the region of the active site and the environment of Cys72 and Cys338 are tightly coupled and that residues far away from the active site, through such coupling, can possess properties of active-site residues. Similar, although less dramatic changes are observed upon removal of the C-terminal tyrosine residue. In view of the results obtained in this paper, aldolase seems to be quite a flexible molecule, whose conformation is sensitive to the nature of a substrate bound to the enzyme and is able to transmit the information about a local perturbation over long distances within a molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号