首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Plants are important sources of food and plant products are essential for modern human life. Plants are increasingly gaining importance as drug and fuel resources, bioremediation tools and as tools for recombinant technology. Considering these applications, database infrastructure for plant model systems deserves much more attention. Study of plant biological pathways, the interconnection between these pathways and plant systems biology on the whole has in general lagged behind human systems biology. In this article we review plant pathway databases and the resources that are currently available. We lay out trends and challenges in the ongoing efforts to integrate plant pathway databases and the applications of database integration. We also discuss how progress in non-plant communities can serve as an example for the improvement of the plant pathway database landscape and thereby allow quantitative modeling of plant biosystems. We propose Good Database Practice as a possible model for collaboration and to ease future integration efforts.  相似文献   

3.
Liquid chromatography and electrophoresis played a major role in the life-science revolution, most strikingly in protein purification, peptide fractionation and sequencing, amino acid analysis, and DNA sequencing. The objective of this article is to examine the potential role of separation systems in the continuing evolution of biochemistry, biotechnology and molecular biology. Very small chip-based systems may change how chemical analyses in biology, medical research and health care evolve over the next decade.  相似文献   

4.
The functioning of even a simple biological system is much more complicated than the sum of its genes, proteins and metabolites. A premise of systems biology is that molecular profiling will facilitate the discovery and characterization of important disease pathways. However, as multiple levels of effector pathway regulation appear to be the norm rather than the exception, a significant challenge presented by high-throughput genomics and proteomics technologies is the extraction of the biological implications of complex data. Thus, integration of heterogeneous types of data generated from diverse global technology platforms represents the first challenge in developing the necessary foundational databases needed for predictive modelling of cell and tissue responses. Given the apparent difficulty in defining the correspondence between gene expression and protein abundance measured in several systems to date, how do we make sense of these data and design the next experiment? In this review, we highlight current approaches and challenges associated with integration and analysis of heterogeneous data sets, focusing on global analysis obtained from high-throughput technologies.  相似文献   

5.
Regarding molecular biology, we see an exponential growth of data and knowledge. Among others, this fact is reflected in more than 300 molecular databases which are readily available on the Internet. The usage of these data requires integration tools capable of complex information fusion processes. This paper will present a novel concept for user specific integration of life science data. Our approach is based on a mediator architecture in conjunction with freely adjustable data schemes. The implemented prototype is called BioDataServer and can be accessed on the Internet: http://integration.genophen.de. To realize a comfortable usage of the resulted data sets of the integration process, a SQL-based query language and a XML data format were developed and implemented.  相似文献   

6.
Currently, literature is integrated in systems biology studies in three ways. Hand-curated pathways have been sufficient for assembling models in numerous studies. Second, literature is frequently accessed in a derived form, such as the concepts represented by the Medical Subject Headings (MeSH) and Gene Ontologies (GO), or functional relationships captured in protein-protein interaction (PPI) databases; both of these are convenient, consistent reductions of more complex concepts expressed as free text in the literature. Moreover, their contents are easily integrated into computational processes required for dealing with large data sets. Last, mining text directly for specific types of information is on the rise as text analytics methods become more accurate and accessible. These uses of literature, specifically manual curation, derived concepts captured in ontologies and databases, and indirect and direct application of text mining, will be discussed as they pertain to systems biology.  相似文献   

7.
There is now a rapidly expanding population of interlinked developmental biology databases on the World Wide Web that can be readily accessed from a desk-top PC using programs such as Netscape or Mosaic. These databases cover popular organisms (Arabidopsis, Caenorhabditis, Drosophila, zebrafish, mouse, etc.) and include gene and protein sequences, lists of mutants, information on resources and techniques, and teaching aids. More complex are databases relating domains of gene expression to embryonic anatomy and these range from existing text-based systems for specific organs such as kidney, to a massive project under development, that will cover gene expression during the whole of mouse embryogenesis. In this brief article, we review selected examples of databases currently available, look forward to what will be available soon, and explain how to gain access to the World Wide Web.  相似文献   

8.
9.
Advances in pharmacology and genomics, and their intervention in human biology are beyond our abilities to understand their consequences. Therapeutic intervention in highly complex, non-linear, adaptive biological systems results in some unforeseen and undesirable consequences. To do the most good with the least harm, the information on biological systems should be gathered into databases, and into comprehensive quantitative models that can help to predict the long-range effects of proposed interventions. This is a societal or professional macro-ethical imperative. The Physiome Project helps to meet this imperative via databasing and creating models and tools for large-scale integration.  相似文献   

10.
Search and discovery strategies for biotechnology: the paradigm shift.   总被引:21,自引:0,他引:21  
Profound changes are occurring in the strategies that biotechnology-based industries are deploying in the search for exploitable biology and to discover new products and develop new or improved processes. The advances that have been made in the past decade in areas such as combinatorial chemistry, combinatorial biosynthesis, metabolic pathway engineering, gene shuffling, and directed evolution of proteins have caused some companies to consider withdrawing from natural product screening. In this review we examine the paradigm shift from traditional biology to bioinformatics that is revolutionizing exploitable biology. We conclude that the reinvigorated means of detecting novel organisms, novel chemical structures, and novel biocatalytic activities will ensure that natural products will continue to be a primary resource for biotechnology. The paradigm shift has been driven by a convergence of complementary technologies, exemplified by DNA sequencing and amplification, genome sequencing and annotation, proteome analysis, and phenotypic inventorying, resulting in the establishment of huge databases that can be mined in order to generate useful knowledge such as the identity and characterization of organisms and the identity of biotechnology targets. Concurrently there have been major advances in understanding the extent of microbial diversity, how uncultured organisms might be grown, and how expression of the metabolic potential of microorganisms can be maximized. The integration of information from complementary databases presents a significant challenge. Such integration should facilitate answers to complex questions involving sequence, biochemical, physiological, taxonomic, and ecological information of the sort posed in exploitable biology. The paradigm shift which we discuss is not absolute in the sense that it will replace established microbiology; rather, it reinforces our view that innovative microbiology is essential for releasing the potential of microbial diversity for biotechnology penetration throughout industry. Various of these issues are considered with reference to deep-sea microbiology and biotechnology.  相似文献   

11.
12.
Integrating 'omic' information: a bridge between genomics and systems biology   总被引:17,自引:0,他引:17  
The availability of genome sequences for several organisms, including humans, and the resulting first-approximation lists of genes, have allowed a transition from molecular biology to 'modular biology'. In modular biology, biological processes of interest, or modules, are studied as complex systems of functionally interacting macromolecules. Functional genomic and proteomic ('omic') approaches can be helpful to accelerate the identification of the genes and gene products involved in particular modules, and to describe the functional relationships between them. However, the data emerging from individual omic approaches should be viewed with caution because of the occurrence of false-negative and false-positive results and because single annotations are not sufficient for an understanding of gene function. To increase the reliability of gene function annotation, multiple independent datasets need to be integrated. Here, we review the recent development of strategies for such integration and we argue that these will be important for a systems approach to modular biology.  相似文献   

13.
Systems biology as a foundation for genome-scale synthetic biology   总被引:4,自引:0,他引:4  
As the ambitions of synthetic biology approach genome-scale engineering, comprehensive characterization of cellular systems is required, as well as a means to accurately model cell-scale molecular interactions. These requirements are coincident with the goals of systems biology and, thus, systems biology will become the foundation for genome-scale synthetic biology. Systems biology will form this foundation through its efforts to reconstruct and integrate cellular systems, develop the mathematics, theory and software tools for the accurate modeling of these integrated systems, and through evolutionary mechanisms. As genome-scale synthetic biology is so enabled, it will prove to be a positive feedback driver of systems biology by exposing and forcing researchers to confront those aspects of systems biology which are inadequately understood.  相似文献   

14.
This review describes how intimately proteogenomics and system biology are imbricated. Quantitative cell-wide monitoring of cellular processes and the analysis of this information is the basis for systems biology. Establishing the most comprehensive protein-parts list is an essential prerequisite prior to analysis of the cell-wide dynamics of proteins, their post-translational modifications, their complex network interactions and interpretation of these data as a whole. High-quality genome annotation is, thus, a crucial basis. Proteogenomics consists of high-throughput identification and characterization of proteins by extra-large shotgun MS/MS approaches and the integration of these data with genomic data. Discovery of the remaining unannotated genes, defining translational start sites, listing signal peptide processing events and post-translational modifications, are tasks that can currently be carried out at a full-genomic scale as soon as the genomic sequence is available. Proteomics is increasingly being used at the primary stage of genome annotation and such an approach may become standard in the near future for genome projects. Advantageously, the same experimental proteomic datasets may be used to characterize the specific metabolic traits of the organism under study. Undoubtedly, comparative genomics will experience a renaissance taking into account this new dimension. Synthetic biology aimed at re-engineering living systems will also benefit from these significant progresses.  相似文献   

15.
16.
Research on biological data integration has traditionally focused on the development of systems for the maintenance and interconnection of databases. In the next few years, public and private biotechnology organisations will expand their actions to promote the creation of a post-genome semantic web. It has commonly been accepted that artificial intelligence and data mining techniques may support the interpretation of huge amounts of integrated data. But at the same time, these research disciplines are contributing to the creation of content markup languages and sophisticated programs able to exploit the constraints and preferences of user domains. This paper discusses a number of issues on intelligent systems for the integration of bioinformatic resources.  相似文献   

17.
The EBI SRS server--recent developments   总被引:4,自引:0,他引:4  
MOTIVATION: The current data explosion is intractable without advanced data management systems. The numerous data sets become really useful when they are interconnected under a uniform interface--representing the domain knowledge. The SRS has become an integration system for both data retrieval and applications for data analysis. It provides capabilities to search multiple databases by shared attributes and to query across databases fast and efficiently. RESULTS: Here we present recent developments at the EBI SRS server (http://srs.ebi.ac.uk). The EBI SRS server contains today more than 130 biological databases and integrates more than 10 applications. It is a central resource for molecular biology data as well as a reference server for the latest developments in data integration. One of the latest additions to the EBI SRS server is the InterPro database-Integrated Resource of Protein Domains and Functional Sites. Distributed in XML format it became a turning point in low level XML-SRS integration. We present InterProScan as an example of data analysis applications, describe some advanced features of SRS6, and introduce the SRSQuickSearch JavaScript interfaces to SRS.  相似文献   

18.
Dow LE  Lowe SW 《Cell》2012,148(6):1099-1109
Analyses of the human genome have proven extremely successful in identifying changes that contribute to human disease. Genetically engineered mice provide a powerful tool to analyze these changes, although they are slow and costly and do not always recapitulate human biology. Recent advances in genomic technologies, rodent-modeling approaches, and the production of patient-derived reprogrammed cell lines now provide a plethora of complementary systems to study disease states and test new therapies. Continued evolution and integration of these model systems will be the key to realizing the benefits of the genomic revolution and refining our understanding and treatment of human diseases.  相似文献   

19.
The concept of “systems biology” is raised by Hood in 1999. It means studying all components with a systematic view. Systems biomedicine is the application of systems biology in medicine. It studies all components in a whole system and aims to reveal the patho-physiologic mechanisms of disease. In recent years, with the development of both theory and technology, systems biomedicine has become feasible and popular. In this review, we will talk about applications of some methods of omics in systems biomedicine, including genomics, metabolomics (proteomics, lipidomics, glycomics), and epigenomics. We will particularly talk about microbiomics and omics for common diseases, two fields which are developed rapidly recently. We also give some bioinformatics related methods and databases which are used in the field of systems biomedicine. At last, some examples that illustrate the whole biological system will be given, and development for systems biomedicine in China and the prospect for systems biomedicine will be talked about.“  相似文献   

20.
The emergence of systems biology is bringing forth a new set of challenges for advancing science and technology. Defining ways of studying biological systems on a global level, integrating large and disparate data types, and dealing with the infrastructural changes necessary to carry out systems biology, are just a few of the extraordinary tasks of this growing discipline. Despite these challenges, the impact of systems biology will be far-reaching, and significant progress has already been made. Moving forward, the issue of how to use systems biology to improve the health of individuals must be a priority. It is becoming increasingly apparent that the field of systems biology and one of its important disciplines, proteomics, will have a major role in creating a predictive, preventative, and personalized approach to medicine. In this review, we define systems biology, discuss the current capabilities of proteomics and highlight some of the necessary milestones for moving systems biology and proteomics into mainstream health care.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号