首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.  相似文献   

2.
The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.  相似文献   

3.
The enzyme mercuric ion reductase MerA is the central component of bacterial mercury resistance encoded by the mer operon. Many MerA proteins possess metallochaperone-like N-terminal domains (NmerA) that can transfer Hg2+ to the catalytic core domain (Core) for reduction to Hg0. These domains are tethered to the homodimeric Core by ∼ 30-residue linkers that are susceptible to proteolysis, the latter of which has prevented characterization of the interactions of NmerA and the Core in the full-length protein. Here, we report purification of homogeneous full-length MerA from the Tn21 mer operon using a fusion protein construct and combine small-angle X-ray scattering and small-angle neutron scattering with molecular dynamics simulation to characterize the structures of full-length wild-type and mutant MerA proteins that mimic the system before and during handoff of Hg2+ from NmerA to the Core. The radii of gyration, distance distribution functions, and Kratky plots derived from the small-angle X-ray scattering data are consistent with full-length MerA adopting elongated conformations as a result of flexibility in the linkers to the NmerA domains. The scattering profiles are best reproduced using an ensemble of linker conformations. This flexible attachment of NmerA may facilitate fast and efficient removal of Hg2+ from diverse protein substrates. Using a specific mutant of MerA allowed the formation of a metal-mediated interaction between NmerA and the Core and the determination of the position and relative orientation of NmerA to the Core during Hg2+ handoff.  相似文献   

4.
M J Moore  C T Walsh 《Biochemistry》1989,28(3):1183-1194
Mercuric ion reductase (the merA gene product) is a unique member of the class of FAD and redox-active disulfide-containing oxidoreductases by virtue of its ability to reduce Hg(II) to Hg(0) as the last step in bacterial detoxification of mercurials. In addition to the active site redox-active disulfide, formed between Cys135 and Cys140 in Tn501 MerA, the protein products of the three merA gene sequences published to date have two additional conserved pairs of cysteines, one near the N-terminus (Cys10Cys13 in Tn501 MerA) and another near the C-terminus (Cys558Cys559 in Tn501 MerA). Neither of these pairs is found in other members of this enzyme family. To assess the possible roles of these peripheral cysteines in the Hg(II) detoxification pathway, we have constructed and characterized one single mutant, Cys10Ala13, and two double mutants, Ala10Ala13 and Ala558Ala559. The N-terminal mutants are fully functional in vivo as determined by HgCl2 resistance studies, showing the N-terminal cysteine pair to be dispensable. In contrast, the Ala558Ala559 mutant is defective for HgCl2 resistance in vivo and Hg(SR)2 reduction in vitro, thereby implicating Cys558 and/or Cys559 in Hg(II) reduction by the wild-type enzyme. Other activities, such as NADPH/thio-NADP+ transhydrogenation, NADPH oxidation, and DTNB reduction, are unimpaired in this mutant.  相似文献   

5.
R T Cummings  C T Walsh 《Biochemistry》1992,31(4):1020-1030
The flavoprotein Tn501 mercuric reductase (MerA) catalyzes the reduction of Hg(II) to Hg(0) through the intermediacy of the tightly bound two-electron-reduced cofactor FADH-. To gain insight into the MerA mechanism, the interaction of the holoenzyme or free FADH- with various metal ions was investigated. The free two-electron-reduced FAD cofactor, FADH-, readily reduces a variety of metal ions, provided they have suitably high redox potentials. For Hg(II) with various ligands, the rate of reduction is inversely proportional to the stability of the Hg(II)-ligand complex. These results are consistent with the free cofactor reducing metal ions by an outer-sphere electron transfer mechanism. In contrast, MerA can tightly bind several redox labile metal ions, but only Hg(II) is reduced. The inability of MerA to reduce these bound metal ions may suggest that MerA differs from free FADH- and utilizes an inner-sphere electron transfer mechanism in Hg(II) reduction.  相似文献   

6.
M J Moore  S M Miller  C T Walsh 《Biochemistry》1992,31(6):1677-1685
Mercuric ion reductase (MerA) catalyzes the reduction of Hg(II) to Hg(0) as the last step in the bacterial mercury detoxification pathway. A member of the flavin disulfide oxidoreductase family, MerA contains an FAD prosthetic group and redox-active disulfide in its active site. However, the presence of these two moieties is not sufficient for catalytic Hg(II) reduction, as other enzyme family members are potently inhibited by mercurials. We have previously identified a second pair of active site cysteines (Cys558 Cys559 in the Tn501 enzyme) unique to MerA, that are essential for high levels of mercuric ion reductase activity [Moore, M. J., & Walsh, C. T. (1989) Biochemistry 28, 1183; Miller, S. M., et al. (1989) Biochemistry 28, 1194]. In this paper, we have examined the individual roles of Cys558 and Cys559 by site-directed mutagenesis of each to alanine. Phenotypic analysis indicates that both merA mutations result in a total disruption of the Hg(II) detoxification pathway in vivo, while characterization of the purified mutant enzymes in vitro shows each to have differential effects on catalytic function. Compared to wild-type enzyme, the C558A mutant shows a 20-fold reduction in kcat and a 10-fold increase in Km, for an overall decrease in catalytic efficiency of 200-fold in kcat/Km. In contrast, mutation of Cys559 to alanine results in less than a 2-fold reduction in kcat and an increase in Km of only 4-5 fold for an overall decrease in catalytic efficiency of only ca. 10-fold in vitro. From these results, it appears that Cys558 plays a more important role in forming the reducible complex with Hg(II), while both Cys558 and Cys559 seem to be involved in efficient scavenging (i.e., tight binding) of Hg(II).  相似文献   

7.
J Y Wang  H Ling  W Yang  R Craigie 《The EMBO journal》2001,20(24):7333-7343
Retroviral integrase, an essential enzyme for replication of human immunodeficiency virus type-1 (HIV-1) and other retroviruses, contains three structurally distinct domains, an N-terminal domain, the catalytic core and a C-terminal domain. To elucidate their spatial arrangement, we have solved the structure of a fragment of HIV-1 integrase comprising the N-terminal and catalytic core domains. This structure reveals a dimer interface between the N-terminal domains different from that observed for the isolated domain. It also complements the previously determined structure of the C-terminal two domains of HIV-1 integrase; superposition of the conserved catalytic core of the two structures results in a plausible full-length integrase dimer. Furthermore, an integrase tetramer formed by crystal lattice contacts bears structural resemblance to a related bacterial transposase, Tn5, and exhibits positively charged channels suitable for DNA binding.  相似文献   

8.
Transposon Tn5 employs a unique means of self-regulation by expressing a truncated version of the transposase enzyme that acts as an inhibitor. The inhibitor protein differs from the full-length transposase only by the absence of the first 55 N-terminal amino acid residues. It contains the catalytic active site of transposase and a C-terminal domain involved in protein-protein interactions. The three-dimensional structure of Tn5 inhibitor determined to 2.9-A resolution is reported here. A portion of the protein fold of the catalytic core domain is similar to the folds of human immunodeficiency virus-1 integrase, avian sarcoma virus integrase, and bacteriophage Mu transposase. The Tn5 inhibitor contains an insertion that extends the beta-sheet of the catalytic core from 5 to 9 strands. All three of the conserved residues that make up the "DDE" motif of the active site are visible in the structure. An arginine residue that is strictly conserved among the IS4 family of bacterial transposases is present at the center of the active site, suggesting a catalytic motif of "DDRE." A novel C-terminal domain forms a dimer interface across a crystallographic 2-fold axis. Although this dimer represents the structure of the inhibited complex, it provides insight into the structure of the synaptic complex.  相似文献   

9.
Protein disulfide isomerase (PDI), an essential folding catalyst and chaperone of the endoplasmic reticulum (ER), has four structural domains (a-b-b'-a'-) of approximately equal size. Each domain has sequence or structural homology with thioredoxin. Sedimentation equilibrium and velocity experiments show that PDI is an elongated monomer (axial ratio 5.7), suggesting that the four thioredoxin domains are extended. In the presence of physiological levels (<1 mM) of Zn(2+) and other thiophilic divalent cations such as Cd(2+) and Hg(2+), PDI forms a stable dimer that aggregates into much larger oligomeric forms with time. The dimer is also elongated (axial ratio 7.1). Oligomerization involves the interaction of Zn(2+) with the cysteines of PDI. PDI has active sites in the N-terminal (a) and C-terminal (a')thioredoxin domains, each with two cysteines (CGHC). Two other cysteines are found in one of the internal domains (b'). Cysteine to serine mutations show that Zn(2+)-dependent dimerization occurs predominantly by bridging an active site cysteine from either one of the active sites with one of the cysteines in the internal domain (b'). The dimer incorporates two atoms of Zn(2+) and exhibits 50% of the isomerase activity of PDI. At longer times and higher PDI concentrations, the dimer forms oligomers and aggregates of high molecular weight (>600 kDa). Because of a very high concentration of PDI in the ER, its interaction with divalent ions could play a role in regulating the effective concentration of these metal ions, protecting against metal toxicity, or affecting the activity of other (ER) proteins that use Zn(2+) as a cofactor.  相似文献   

10.
Chitinase B of "Microbulbifer degradans" 2-40 is a modular protein that is predicted to contain two glycoside hydrolase family 18 (GH18) catalytic domains, two polyserine domains, and an acidic repeat domain. Each of the GH18 domains was shown to be catalytically active against chitin. Activity assays reveal that the amino-terminal catalytic domain (GH18(N)) releases methylumbelliferone from 4'-methylumbelliferyl-N,N'-diacetylchitobiose 13.6-fold faster than the carboxy-terminal catalytic domain (GH18(C)) and releases chitobiose from the nonreducing end of chitooligosaccharides, therefore functioning as an exochitinase. GH18(C) releases methylumbelliferone from 4'-methylumbelliferyl-N,N',N"-triacetylchitotriose 2.7-fold faster than GH18(N) and cleaves chitooligosaccharides at multiple bonds, consistent with endochitinolytic activity. Each domain was maximally active from 30 to 37 degrees C and from pH 7.2 to 8.0 and was not affected by Mg(2+), Mn(2+), Ca(2+), K(+), EDTA, EGTA, or 1.0 M NaCl. The activity of each domain was moderately inhibited by Ni(2+), Sr(2+), and Cu(2+), while Hg(2+) completely abolished activity. When the specific activities of various recombinant portions of ChiB were calculated by using native chitin as a substrate, the polypeptide containing the endo-acting domain was twofold more active on native chitin than the other containing the exo-acting domain. The presence of both domains in a single reaction increased the amount of reducing sugars released from native chitin to 140% above the theoretical combined rate, indicating that the domains function cooperatively to degrade chitin. These data demonstrate that the GH18 domains of ChiB have different activities on the same substrate and function cooperatively to enhance chitin depolymerization.  相似文献   

11.
12.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

13.
A chitinase encoding gene from Bacillus sp. DAU101 was cloned in Escherichia coli. The nucleotide sequencing revealed a single open reading frame containing 1781 bp and encoding 597 amino acids with 66 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram. The chitinase was composed of three domains: a catalytic domain, a fibronectin III domain, and a chitin binding domain. The chitinase was purified by GST-fusion purification system. The pH and temperature optima of the enzyme were 7.5 and 60 degrees C, respectively. The metal ions, Zn(2+), Cu(2+), and Hg(2+), were strongly inhibited chitinase activity. However, chitinase activity was increased 1.4-fold by Co(2+). Chisb could hydrolyze GlcNAc(2) to N-acetylglucosamine and was produced GlcNAc(2), when chitin derivatives were used as the substrate. This indicated that Chisb was a bifunctional enzyme, N-acetylglucosaminase and chitobiosidase. The enzyme could not hydrolyze glycol chitin, glycol chitosan, or CMC, but hydrolyzed colloidal chitin and soluble chitosan.  相似文献   

14.
HisB from Escherichia coli is a bifunctional enzyme catalyzing the sixth and eighth steps of l-histidine biosynthesis. The N-terminal domain (HisB-N) possesses histidinol phosphate phosphatase activity, and its crystal structure shows a single domain with fold similarity to the haloacid dehalogenase (HAD) enzyme family. HisB-N forms dimers in the crystal and in solution. The structure shows the presence of a structural Zn(2+) ion stabilizing the conformation of an extended loop. Two metal binding sites were also identified in the active site. Their presence was further confirmed by isothermal titration calorimetry. HisB-N is active in the presence of Mg(2+), Mn(2+), Co(2+), or Zn(2+), but Ca(2+) has an inhibitory effect. We have determined structures of several intermediate states corresponding to snapshots along the reaction pathway, including that of the phosphoaspartate intermediate. A catalytic mechanism, different from that described for other HAD enzymes, is proposed requiring the presence of the second metal ion not found in the active sites of previously characterized HAD enzymes, to complete the second half-reaction. The proposed mechanism is reminiscent of two-Mg(2+) ion catalysis utilized by DNA and RNA polymerases and many nucleases. The structure also provides an explanation for the inhibitory effect of Ca(2+).  相似文献   

15.
In all mature tRNAs, the 3'-terminal CCA sequence is synthesized or repaired by a template-independent nucleotidyltransferase (ATP(CTP):tRNA nucleotidyltransferase; EC 2.7.7.25). The Escherichia coli enzyme comprises two domains: an N-terminal domain containing the nucleotidyltransferase activity and an uncharacterized C-terminal HD domain. The HD motif defines a superfamily of metal-dependent phosphohydrolases that includes a variety of uncharacterized proteins and domains associated with nucleotidyltransferases and helicases from bacteria, archaea, and eukaryotes. The C-terminal HD domain in E. coli tRNA nucleotidyltransferase demonstrated Ni(2+)-dependent phosphatase activity toward pyrophosphate, canonical 5'-nucleoside tri- and diphosphates, NADP, and 2'-AMP. Assays with phosphodiesterase substrates revealed surprising metal-independent phosphodiesterase activity toward 2',3'-cAMP, -cGMP, and -cCMP. Without metal or in the presence of Mg(2+), the tRNA nucleotidyltransferase hydrolyzed 2',3'-cyclic substrates with the formation of 2'-nucleotides, whereas in the presence of Ni(2+), the protein also produced some 3'-nucleotides. Mutations at the conserved His-255 and Asp-256 residues comprising the C-terminal HD domain of this protein inactivated both phosphodiesterase and phosphatase activities, indicating that these activities are associated with the HD domain. Low concentrations of the E. coli tRNA (10 nm) had a strong inhibiting effect on both phosphatase and phosphodiesterase activities. The competitive character of inhibition by tRNA suggests that it might be a natural substrate for these activities. This inhibition was completely abolished by the addition of Mg(2+), Mn(2+), or Ca(2+), but not Ni(2+). The data suggest that the phosphohydrolase activities of the HD domain of the E. coli tRNA nucleotidyltransferase are involved in the repair of the 3'-CCA end of tRNA.  相似文献   

16.
The EAL domain (also known as domain of unknown function 2 or DUF2) is a ubiquitous signal transduction protein domain in the Bacteria. Its involvement in hydrolysis of the novel second messenger cyclic dimeric GMP (c-di-GMP) was demonstrated in vivo but not in vitro. The EAL domain-containing protein Dos from Escherichia coli was reported to hydrolyze cyclic AMP (cAMP), implying that EAL domains have different substrate specificities. To investigate the biochemical activity of EAL, the E. coli EAL domain-containing protein YahA and its individual EAL domain were overexpressed, purified, and characterized in vitro. Both full-length YahA and the EAL domain hydrolyzed c-di-GMP into linear dimeric GMP, providing the first biochemical evidence that the EAL domain is sufficient for phosphodiesterase activity. This activity was c-di-GMP specific, optimal at alkaline pH, dependent on Mg(2+) or Mn(2+), strongly inhibited by Ca(2+), and independent of protein oligomerization. Linear dimeric GMP was shown to be 5'pGpG. The EAL domain from Dos was overexpressed, purified, and found to function as a c-di-GMP-specific phosphodiesterase, not as a cAMP-specific phosphodiesterase, in contrast to previous reports. The EAL domains can hydrolyze 5'pGpG into GMP, however, very slowly, thus implying that this activity is irrelevant in vivo. Therefore, c-di-GMP is the exclusive substrate of EAL. Multiple-sequence alignment revealed two groups of EAL domains hypothesized to correspond to enzymatically active and inactive domains. The domains in the latter group have mutations in residues conserved in the active domains. The enzymatic inactivity of EAL domains may explain their coexistence with GGDEF domains in proteins possessing c-di-GMP synthase (diguanulate cyclase) activity.  相似文献   

17.
NifU is a homodimeric modular protein comprising N- and C-terminal domains and a central domain with a redox-active [2Fe-2S](2+,+) cluster. It plays a crucial role as a scaffold protein for the assembly of the Fe-S clusters required for the maturation of nif-specific Fe-S proteins. In this work, the time course and products of in vitro NifS-mediated iron-sulfur cluster assembly on full-length NifU and truncated forms involving only the N-terminal domain or the central and C-terminal domains have been investigated using UV-vis absorption and M?ssbauer spectroscopies, coupled with analytical studies. The results demonstrate sequential assembly of labile [2Fe-2S](2+) and [4Fe-4S](2+) clusters in the U-type N-terminal scaffolding domain and the assembly of [4Fe-4S](2+) clusters in the Nfu-type C-terminal scaffolding domain. Both scaffolding domains of NifU are shown to be competent for in vitro maturation of nitrogenase component proteins, as evidenced by rapid transfer of [4Fe-4S](2+) clusters preassembled on either the N- or C-terminal domains to the apo nitrogenase Fe protein. Mutagenesis studies indicate that a conserved aspartate (Asp37) plays a critical role in mediating cluster transfer. The assembly and transfer of clusters on NifU are compared with results reported for U- and Nfu-type scaffold proteins, and the need for two functional Fe-S cluster scaffolding domains on NifU is discussed.  相似文献   

18.
19.
Sequence homologs of the small MutS-related (Smr) domain, the C-terminal endonuclease domain of MutS2, also exist as stand-alone proteins. In this study, we report the crystal structure of a proteolyzed fragment of YdaL (YdaL??-???), a stand-alone Smr protein from Escherichia coli. In this structure, residues 86-170 assemble into a classical Smr core domain and are embraced by an N-terminal extension (residues 40-85) with an α/β/α fold. Sequence alignment indicates that the N-terminal extension is conserved among a number of stand-alone Smr proteins, suggesting structural diversity among Smr domains. We also discovered that the DNA binding affinity and endonuclease activity of the truncated YdaL??-??? protein were slightly lower than those of full-length YdaL?-???, suggesting that residues 1-38 may be involved in DNA binding.  相似文献   

20.
CUB domains are 110-residue protein motifs exhibiting a β-sandwich fold and mediating protein-protein interactions in various extracellular proteins. Recent X-ray structural and mutagenesis studies have led to the identification of a particular CUB domain subset, cbCUB (Ca(2+)-binding CUB domain). Unlike other CUB domains, these harbour a homologous Ca(2+)-binding site that underlies a conserved binding site mediating ionic interaction between two of the three conserved acidic Ca(2+) ligands and a basic (lysine or arginine) residue of a protein ligand, similar to the interactions mediated by the low-density lipoprotein receptor family. cbCUB-mediated protein-ligand interactions usually involve multipoint attachment through several cbCUBs, resulting in high-affinity binding through avidity, despite the low affinity of individual interactions. The aim of the present review is to summarize our current knowledge about the structure and functions of cbCUBs, which represent the majority of the known CUB repertoire and are involved in a variety of major biological functions, including immunity and development, as well as in various cancer types. Examples discussed in the present review include a wide range of soluble and membrane-associated human proteins, as well as some archaeal and invertebrate proteins. The fact that these otherwise unrelated proteins share a common Ca(2+)-dependent ligand-binding ability suggests a mechanism inherited from very primitive ancestors. The information provided in the present review should stimulate further investigations on the crucial interactions mediated by cbCUB-containing proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号