首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The denaturation of lysozyme and ribonuclease A by guanidine hydrochloride was followed in the presence and absence of glycerol and sorbitol by means of circular dichroism measurements at 25 degrees C. The protein-solvent interactions in the presence of these polyols were also studied by means of density measurements, for discussion of the mechanism of protein stabilization by polyols in terms of the multicomponent thermodynamic theory. The free energy of denaturation depends linearly on the molarity of guanidine hydrochloride at a given polyol concentration, without modification of the cooperativity of the transition. The free energy of denaturation at an infinite dilution of guanidine hydrochloride increases in proportion to the polyol concentration. These results indicate the competing solvent effects of polyols and guanidine hydrochloride on the structures of proteins. In water-protein-polyol systems, protein is preferentially hydrated to elevate its chemical potential, predominantly due to the unfavorable interaction of polyols with the exposed nonpolar amino acid residues. By linkage with the free energy of denaturation, it was quantitatively determined that the chemical potential of denatured protein is more extensively elevated by addition of polyols than that of native protein. These results demonstrate that polyols stabilize the protein structure through strengthening of the hydrophobic interaction, competing with the effect of guanidine hydrochloride.  相似文献   

2.
Thermodynamic nonideality arising from the space-filling effect of added sucrose is employed to confirm that the reversible unfolding of ribonuclease A effected by acid may be described as an equilibrium between native and unfolded states of the enzyme. However, the extent of the volume change is far too small for the larger isomer to be the fully expanded state, a result signifying that the acid-mediated unfolding of ribonuclease does not conform with the two-state equilibrium model of protein denaturation. Although the thermal denaturation of ribonuclease A is characterized by a larger increase in volume, quantitative reappraisal of published results on the effects of glycerol on this transition at pH 2.8 (Gekko, K., and Timasheff, S. N., 1981 Biochemistry 20, 4677-4686) leads to an estimated volume increase that is much smaller than that inferred from hydrodynamic studies--a disparity attributed to the dual actions of glycerol as a space-filling solute and as a ligand that binds preferentially to the thermally unfolded form of the enzyme. Even in this unfavorable circumstance the fact that glycerol exerts a net excluded volume effect at least confirms that the thermal unfolding of ribonuclease A is an equilibrium transition between two discrete states. The strengths and limitations of using thermodynamic nonideality as a probe of the two-state equilibrium model of protein denaturation are discussed in the light of these findings.  相似文献   

3.
J L Koenig  B G Frushour 《Biopolymers》1972,11(12):2505-2520
The Raman spectra of three globular proteins, beef pancreas chymotrypsinogen A, beef pancreas ribonuclease, and hen egg white ovalbumin have been obtained in the solid state and aqueous solution. X-ray diffraction and circular dichroism evidence have indicated that these proteins have a low α-helical content and a large fraction of the residues in the unordered and β-sheet conformation. The frequencies and intensities of the amide I and amide III lines are consistent with assignments based on the Raman spectra of polypeptides. The intense amide III lines observed in all the spectra would be expected for proteins with a low fraction of the residues in the α-helical conformation. Several spectra changes occur upon dissolution of the proteins in water and may be associated with further hydration of the proteins. The spectrum of thermally denatured chymotrypsinogen is presented. A 3 cm–1 decrease in the frequency of the amide I line of the protein dissolved in D2O upon heating was observed. This observation is consistent with a denaturation mechanism allowing only slight changes in the secondary structure but an increase in solvent penetration upon going from the native to the reversibly denatured state.  相似文献   

4.
D. F. Nicoli  G. B. Benedek 《Biopolymers》1976,15(12):2421-2437
The technique of intensity correlation light-scattering spectroscopy has been used to accurately determine the extent of physical swelling of lysozyme, ribonuclease, and chymotrypsinogen produced by thermal denaturation. The change in hydrodynamic radius is deduced from direct measurements of the diffusion coefficient, carried out in the temperature range 20° to 70°C at various values of pH in the range 1.0 to 3.0 at ionic strengths of from 0.01 M to 0.2 M. An average radius increase of 18% is observed for lysozyme and ribonuclease, with an estimate of 26% for chymotrypsinogen. Analysis of the pH dependence of the transition temperature leads to the conclusion that the lysozyme charge increases by approximately +2e during unfolding. We have applied this value of the charge increase along with the 18% average radius increase to estimate the electrostatic contribution to the free-energy change for denaturation of lysozyme. The results are consistent with the experimental observation that the transition temperature is nearly independent of ionic strength.  相似文献   

5.
The effect of interactions of sorbitol with ribonuclease A (RNase A) and the resulting stabilization of structure was examined in parallel thermal unfolding and preferential binding studies with the application of multicomponent thermodynamic theory. The protein was stabilized by sorbitol both at pH 2.0 and pH 5.5 as the transition temperature, Tm, was increased. The enthalpy of the thermal denaturation had a small dependence on sorbitol concentration, which was reflected in the values of the standard free energy change of denaturation, delta delta G(o) = delta G(o) (sorbitol) - delta G(o)(water). Measurements of preferential interactions at 48 degrees C at pH 5.5, where protein is native, and pH 2.0 where it is denatured, showed that sorbitol is preferentially excluded from the denatured protein up to 40%, but becomes preferentially bound to native protein above 20% sorbitol. The chemical potential change on transferring the denatured RNase A from water to sorbitol solution is larger than that for the native protein, delta mu(2D) > delta mu(2N), which is consistent with the effect of sorbitol on the free energy change of denaturation. The conformity of these results to the thermodynamic expression of the effect of a co-solvent on denaturation, delta G(o)(W) + delta mu(D)(2)delta G(o)(S) + delta mu(2D), indicates that the stabilization of the protein by sorbitol can be fully accounted for by weak thermodynamic interactions at the protein surface that involve water reversible co-solvent exchange at thermodynamically non-neutral sites. The protein structure stabilizing action of sorbitol is driven by stronger exclusion from the unfolded protein than from the native structure.  相似文献   

6.
Feng S  Yan YB 《Proteins》2008,71(2):844-854
All organisms have developed detect, repair, regulation, and stabilization mechanisms to survive from cellular and molecular damage induced by diverse stresses. Among them, the accumulation of osmolytes is a common mechanism evolved by cells to maintain cell volume and stabilize macromolecules against various environmental stresses. The molecular mechanisms by which osmolytes stabilize proteins and prevent aggregation have been well-established. However, little is known about the effects of osmolytes on mutated or damaged proteins. In this research, we investigated the effects of glycerol on the activity, structure, and stability of the wild type (WT) and D54G CK under normal and extreme (high temperature) conditions. It was found that glycerol had similar effects on the suppression of the aggregation during the refolding of both proteins. Under native conditions, the effect of glycerol on the mutated protein was more obvious than on the WT protein. Glycerol could efficiently force the mutated protein to fold to a state close to the WT protein, and thus stabilize the native state of the mutated protein. Glycerol could also protect both the WT and mutated proteins against heat-induced denaturation. However, the change in the transition free energy of heat-induced inactivation of the WT protein was larger than that of the mutated protein. These results suggested that glycerol might have differential effects on the changes of the chemical potential and the transition free energy of the WT and mutated proteins.  相似文献   

7.
The reversible heat denaturation of chymotrypsinogen   总被引:6,自引:0,他引:6       下载免费PDF全文
Within a restricted range of pH and protein concentration crystalline chymotrypsinogen undergoes thermal denaturation which is wholly reversed upon cooling. At a given temperature an equilibrium exists between native and reversibly denatured protein. Within the pH range 2 to 3 the amount of denatured protein is a function of the third power of the hydrogen ion activity. The presence of small amounts of electrolyte causes aggregation of the reversibly denatured protein. A specific anion effect has been observed at pH 2 but not at pH 3. Both the reversible denaturation reaction and the reversal reaction have been found to be first order reactions with respect to protein and the kinetic and thermodynamic constants for both reactions have been approximated at pH 2 and at pH 3. Renatured chymotrypsinogen has been found to be identical with native chymotrypsinogen with respect to crystallizability, solubility, activation to δ-chymotrypsin, sedimentation rate, and behavior upon being heated. Irreversible denaturation of chymotrypsinogen has been found to depend on pH, temperature, protein concentration, and time of heating. Irreversible denaturation results in an aggregation of the denatured protein.  相似文献   

8.
The denaturation of ribonuclease A by guanidine hydrochloride, lithium bromide, and lithium chloride and by mixed denaturants consisting of guanidine hydrochloride and one of the denaturants lithium chloride, lithium bromide, and sodium bromide was followed by difference spectral measurements at pH 4.8 and 25 degrees C. Both components of mixed denaturant systems enhance each other's effect in unfolding the protein. The effect of lithium bromide on the midpoint of guanidine hydrochloride denaturation transition is approximately the sum of the effects of the constituent ions. For all the mixed denaturants tested, the dependence of the free energy change on denaturation is linear. The conformational free energy associated with the guanidine hydrochloride denaturation transition in water is 7.5 +/- 0.1 kcal mol-1, and it is unchanged in the presence of low concentrations of lithium bromide, lithium chloride, and sodium bromide which by themselves are not concentrated enough to unfold the protein. The conformational free energy associated with the lithium bromide denaturation transition in water is 11.7 +/- 0.3 kcal mol-1, and it is not affected by the presence of low concentrations of guanidine hydrochloride which by themselves do not disrupt the structure of native ribonuclease A.  相似文献   

9.
T Arakawa  R Bhat  S N Timasheff 《Biochemistry》1990,29(7):1924-1931
The observed preferential hydration of proteins in aqueous MgCl2 solutions at low pH and low salt concentration (Arakawa et al., 1990) prompted a scrutiny of possible protein stabilization by MgCl2 under the same conditions, in view of earlier observations in aqueous solutions of sugars, amino acids, and a number of salts that preferential hydration is usually accompanied by the stabilization of the native structure of globular proteins. The results of thermal transition experiments on five proteins (ribonuclease A, lysozyme, beta-lactoglobulin, chymotrypsinogen, and bovine serum albumin) revealed neither significant stabilization nor destabilization of the protein structures by MgCl2 both at acid conditions (except for ribonuclease A, which was stabilized, but to a much smaller extent than by MgSO4) and at higher pH at which MgCl2 displayed little preferential hydration. This was in contrast to the great stabilizing action of MgSO4 at the same conditions. 2-Methyl-2,4-pentanediol (MPD), which gives a very large preferential hydration of native ribonuclease A at pH 5.8 [Pittz & Timasheff (1978) Biochemistry 17, 615-623], was found to be a strong destabilizer of that protein at the same conditions. Analysis of the preferentially hydrating solvent systems led to their classification into two categories: those in which the preferential hydration is independent of solution conditions and those in which it varies with conditions. The first always stabilize protein structure, while the second do not. In the first category the predominant interaction is that of cosolvent exclusion, determined by solvent properties, with the protein being essentially inert. In the second category interactions are determined to a major extent by the chemical nature of the protein surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An analysis of the thermodynamics of protein stability reveals a general tendency for proteins that denature at higher temperatures to have greater free energies of maximal stability. To a reasonable approximation, the temperature of maximal stability for the set of globular, water-soluble proteins surveyed by Robertson and Murphy occurs at T* approximately 283K, independent of the heat denaturation temperature, T(m). This observation indicates, at least for these proteins, that thermostability tends to be achieved through elevation of the stability curve rather than by broadening or through a horizontal shift to higher temperatures. The relationship between the free energy of maximal stability and the temperature of heat denaturation is such that an increase in maximal stability of approximately 0.008 kJ/mole/residue is, on average, associated with a 1 degrees C increase in T(m). An estimate of the energetic consequences of thermal expansion suggests that these effects may contribute significantly to the destabilization of the native state of proteins with increasing temperature.  相似文献   

11.
Alpha-lactalbumin constitutes about 3% of bovine milk proteins. The preferential solvent interactions between selected cosolvents (sorbitol, sucrose and glycerol) and alpha-lactalbumin at pH 7.5 was determined using precision densitimetry. The preferential interaction parameter (xi(3)) and other thermodynamic parameters were calculated at different solvent concentrations. The xi(3) parameter was maximum at 30%, 45% and 40% (w/v) concentrations with the values of -0.282g/g, -0.171g/g and -0.299g/g for sorbitol, sucrose and glycerol, respectively. Thus the principal driving energy in the system being preferential hydration and mutual exclusion of bulk solvent. There was only a marginal change in the CD spectra of the protein with these cosolvents indicating the integrity of secondary structures. The results of thermal denaturation measurements indicated an increase in thermal stability of alpha-lactalbumin with these cosolvents. In the presence of 30% sorbitol there was an increase in the apparent thermal transition temperature (apparent T(m)) from 65 to 71 degrees C. These results indicate that the selected cosolvents in this study stabilizes alpha-lactalbumin without altering the structure of the protein.  相似文献   

12.
Osmolytes increase the thermodynamic conformational stability of proteins, shifting the equilibrium between native and denatured states to favor the native state. However, their effects on conformational equilibria within native-state ensembles of proteins remain controversial. We investigated the effects of sucrose, a model osmolyte, on conformational equilibria and fluctuations within the native-state ensembles of bovine pancreatic ribonuclease A and S and horse heart cytochrome c. In the presence of sucrose, the far- and near-UV circular dichroism spectra of all three native proteins were slightly altered and indicated that the sugar shifted the native-state ensemble toward species with more ordered, compact conformations, without detectable changes in secondary structural contents. Thermodynamic stability of the proteins, as measured by guanidine HCl-induced unfolding, increased in proportion to sucrose concentration. Native-state hydrogen exchange (HX) studies monitored by infrared spectroscopy showed that addition of 1 M sucrose reduced average HX rate constants at all degrees of exchange of the proteins, for which comparison could be made in the presence and absence of sucrose. Sucrose also increased the exchange-resistant core regions of the proteins. A coupling factor analysis relating the free energy of HX to the free energy of unfolding showed that sucrose had greater effects on large-scale than on small-scale fluctuations. These results indicate that the presence of sucrose shifts the conformational equilibria toward the most compact protein species within native-state ensembles, which can be explained by preferential exclusion of sucrose from the protein surface.  相似文献   

13.
The preferential interactions of bovine serum albumin, lysozyme, chymotrypsinogen, ribonuclease A, and beta-lactoglobulin with polyethylene glycols (PEGs) of molecular weight 200-6,000 have been measured by dialysis equilibrium coupled with high precision densimetry. All the proteins were found to be preferentially hydrated in all the PEGs, and the magnitude of the preferential hydration increased with increasing PEG size for each protein. The change in the chemical potentials of the proteins with the addition of the PEGs had highly positive values, indicating a strong thermodynamic destabilization of the system by the PEGs. A viscosity study of the PEGs showed them to be randomly coiled polymers, as their radii of gyration were related to the molecular weight by Rg = aM0.55. The thickness of the effective shell impenetrable to PEG around protein molecules, calculated from the preferential hydration, was found to vary with PEG molecular weight in similar fashion as the PEG radius of gyration, supporting the proposal (Arakawa, T. & Timasheff, S.N., 1985a, Biochemistry 24, 6756-6762) that the preferential exclusion of PEGs from proteins is due principally to the steric exclusion of PEG from the protein domain, although favorable interactions with protein surface residues, in particular nonpolar ones, may compete with the exclusion. These thermodynamically unfavorable preferential exclusion interactions lead to the action of PEGs as precipitants, although they may destabilize protein structure at higher temperatures.  相似文献   

14.
The shape of light absorption bands of proteins to about 250 nm can be described as the sum of two overlapping lognormal distribution curves. A plot of the differences between the mathematically smooth fitted curve and the experimental points provides a vivid display of vibronic fine structure. Band parameters and difference plots are provided for the N-acetyl-ethyl esters of the aromatic amino acids and are compared with those of glucagon, ribonuclease, chymotrypsinogen, lysozyme and apoaspartate aminotransferase. Changes in band parameters and fine structure are observed upon denaturation and in conversion of glucagon to fibril form.  相似文献   

15.
In order to broaden the scope and increase the utility of differential scanning calorimetry, a theoretical model of calorimetric thermograms is presently proposed which facilitates their biophysical interpretation and accounts explicitly for their modifications induced by denaturing agents and/or pH. The model rests mainly on statistical-physical considerations, the denaturation-linked increase of the number of binding sites for denaturants (including H+) serving as the conceptual basis for thermogram modelling. Denaturants were envisioned as contributing indirectly to thermal denaturation by forming complexes preferentially with unfolded protein molecules, shifting thus the equilibrium towards the denatured phase. After postulating the probability of complex formation, mean numbers of the relevant molecular species were computed by ensemble averaging. Finally, an eight-parameter expression has been derived defining protein heat capacity as a function of both temperature and denaturant concentration (or pH), each of the eight parameters having a distinct biophysical meaning. The model has been tested by applying it to the prediction of the pH-dependence of thermograms. Four proteins have been considered (lysozyme, myoglobin, apomyoglobin, and ribonuclease A), each represented by a series of three to four published thermograms recorded under different pH conditions. Model equations, fitted simultaneously to all thermograms in a pH series, reproduced correctly experimental tracings. Parameter values obtained as best-fit requirements (particularly those representing the number of binding sites unmasked by denaturation and the free energy of ion binding) were in close agreement with empirical, mainly potentiometric, data from literature. The empirically established pH-independence of the total enthalpy of denaturation, the phenomenon of cold denaturation, the pH-dependence of the Gibbs free energy of denaturation, of the melting temperature and of the temperature of cold denaturation, were all correctly predicted by the model. Combined effects of multiple denaturants, including the effects of pH in the presence of denaturants other than protons, are also predictable by the model.  相似文献   

16.
J Kardos  A Bódi  P Závodszky  I Venekei  L Gráf 《Biochemistry》1999,38(38):12248-12257
Chymotrypsinogen and proelastase 2 are the only pancreatic proteases with propeptides that remain attached to the active enzyme via a disulfide bridge. It is likely, although not proven, that these propeptides are functionally important in the active enzymes, as well as in the zymogens. A mutant chymotrypsin was constructed to test this hypothesis, but it was demonstrated that the lack of the propeptide had no effect on the catalytic efficiency, substrate specificity, or folding of the protein [Venekei, I., et al. (1996) FEBS Lett. 379, 139-142]. In this paper, we investigate the role of the disulfide-linked propeptide in the conformational stability of chymotrypsin(ogen). We compare the stabilities of the wild-type and mutant proteins (lacking propeptide-enzyme interactions) in their zymogen (chymotrypsinogen) and active (chymotrypsin) forms. The mutants exhibited a substantially increased sensitivity to heat denaturation and guanidine hydrochloride unfolding, and a faster loss of activity at extremes of pH relative to those of their wild-type counterparts. From guanidine hydrochloride denaturation experiments, we determined that covalently linked propeptide provides about 24 kJ/mol of free energy of extra stabilization (DeltaDeltaG). In addition, the mutant chymotrypsinogen lacked the normal resistance to digestion by pepsin. This may also explain (besides keeping the zymogen inactive) the evolutionary conservation of the propeptide-enzyme interactions. Tryptophan fluorescence, circular dichroism, microcalorimetric, and activity measurements suggest that the propeptide of chymotrypsin restricts the relative mobility between the two domains of the molecule. In pancreatic serine proteases, such as trypsin, that lose the propeptide upon activation, this function appears to be accomplished via alternative interdomain contacts.  相似文献   

17.
Carnosine promotes the heat denaturation of glycated protein   总被引:3,自引:0,他引:3  
Glycation alters protein structure and decreases biological activity. Glycated proteins, which accumulate in affected tissue, are reliable markers of disease. Carnosine, which prevents glycation, may also play a role in the disposal of glycated protein. Carnosinylation tags glycated proteins for cell removal. Since thermostability determines cell turnover of proteins, the present study examined carnosine's effect on thermal denaturation of glycated protein using cytosolic aspartate aminotransferase (cAAT). Glycated cAAT (500 microM glyceraldehyde for 72h at 37 degrees C) increased the T(0.5) (temperature at which 50% denaturation occurs) and the Gibbs free energy barrier (DeltaG) for denaturation. The enthalpy of denaturation (DeltaH) for glycated cAAT was also higher than that for unmodified cAAT, suggesting that glycation changes the water accessible surface. Carnosine enhanced the thermal unfolding of glycated cAAT as evidenced by a decreased T(0.5) and a lowered Gibbs free energy barrier. Additionally, carnosine decreased the enthalpy of denaturation, suggesting that carnosine may promote hydration during heat denaturation of glycated protein.  相似文献   

18.
The conformational stabilities of eight proteins in terms of the free energy differences between the native "folded" state of the protein and its "unfolded" state were determined at 298 K by two methods: chemical denaturation at 298 K and extrapolation to 298 K of the thermal denaturation results at high temperature. The proteins were expressed in Escherichia coli from the Haemophilus influenzae and E. coli genes at different levels of expression, covered a molecular mass range from 13 to 37 kg mol(-1) per monomeric unit (some exhibiting unique structural features), and were oligomeric up to four subunits. The free energy differences were determined by application of a two-state transition model to the chemical and thermal denaturation results, ranged from 9.4 to 148 kJ mol(-1) at 298 K, and were found to be within the experimental uncertainties of both methods for all of the proteins. Any contributions from intermediate states detectable from chemical and thermal denaturation differences in the unfolding free energy differences in these proteins are within the experimental uncertainties of both methods.  相似文献   

19.
Standard methods for measuring free energy of protein unfolding by chemical denaturation require complete folding at low concentrations of denaturant so that a native baseline can be observed. Alternatively, proteins that are completely unfolded in the absence of denaturant can be folded by addition of the osmolyte trimethylamine N-oxide (TMAO), and the unfolding free energy can then be calculated through analysis of the refolding transition. However, neither chemical denaturation nor osmolyte-induced refolding alone is sufficient to yield accurate thermodynamic unfolding parameters for partly folded proteins, because neither method produces both native and denatured baselines in a single transition. Here we combine urea denaturation and TMAO stabilization as a means to bring about baseline-resolved structural transitions in partly folded proteins. For Barnase and the Notch ankyrin domain, which both show two-state equilibrium unfolding, we found that DeltaG degrees for unfolding depends linearly on TMAO concentration, and that the sensitivity of DeltaG degrees to urea (the m-value) is TMAO independent. This second observation confirms that urea and TMAO exert independent effects on stability over the range of cosolvent concentrations required to bring about baseline-resolved structural transitions. Thermodynamic parameters calculated using a global fit that assumes additive, linear dependence of DeltaG degrees on each cosolvent are similar to those obtained by standard urea-induced unfolding in the absence of TMAO. Finally, we demonstrate the applicability of this method to measurement of the free energy of unfolding of a partly folded protein, a fragment of the full-length Notch ankyrin domain.  相似文献   

20.
Reversible denaturation of several proteins (alpha-chymotrypsin, trypsin, laccase, chymotrypsinogen, cytochrome c and myoglobin) by a broad series of organic solvents of different nature was studied. The regularities of this process were analyzed, employing both experimental and literary data based on the results of kinetic and spectroscopic measurements. In all the systems under study denaturation proceeded in a threshold manner, i. e., an abrupt change in the catalytic and/or spectroscopic properties of the dissolved proteins was observed after a certain threshold concentration of the organic solvent had been reached. To account for the observed features of the denaturation process, a thermodynamic model of reversible protein denaturation by organic solvents was proposed. This model is based on the widely accepted viewpoint that the undisturbed water shell around the protein globule is necessary for maintaining the dissolved protein in the native state. Quantitative analysis of the model led to an equation establishing a relationship between the threshold concentration of an organic solvent and its physico-chemical characteristics, such as hydrophobicity, solvating ability and molecular geometry. This equation fits well in the experimental data for all the proteins tested. Based on the above thermodynamic model of protein denaturation, a novel quantitative parameter characterizing the denaturing strength of organic solvents (termed as the denaturation capacity or DC) was proposed. Different organic solvents arranged according to their DC values form the DC scale of organic solvents which permits to predict theoretically the threshold concentration of any organic solvent for a given protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号