首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Function and induction of the microsomal heme oxygenase   总被引:7,自引:0,他引:7  
Molecular and Cellular Biochemistry - The microsomal heme oxygenase system consists of heme oxygenase and NADPH-cytochrome P-450 reductase, and is considered to play a key role in the physiological...  相似文献   

3.
Heat shock induction of heme oxygenase mRNA in human Hep 3B hepatoma cells   总被引:2,自引:0,他引:2  
Heat shock treatment of human Hep 3B hepatoma cells led to the induction of mRNA for microsomal heme oxygenase. The maximum induction of heme oxygenase mRNA (5----7-fold) was observed with treatment of cells at 43.5 degrees C, for 60 min. The heat-mediated induction of heme oxygenase mRNA was blocked by simultaneous treatment of cells with actinomycin D or cycloheximide. In contrast to Hep 3B cells, cells of another human hepatoma line, Hep G2, showed little induction of heme oxygenase mRNA by heat treatment. These findings suggest that heat shock treatment induces heme oxygenase mRNA in certain human hepatoma cells, but not in others.  相似文献   

4.
5.
Induction of heme oxygenase mRNA by cobalt protoporphyrin in rat liver   总被引:1,自引:0,他引:1  
The effect of cobaltic(III)-protoporphyrin on heme oxygenase activity and mRNA content was examined in vivo in the adult male rat liver. The activity of heme oxygenase, the rate-limiting enzyme in the degradation of heme, was enhanced, as expected, by cobalt protoporphyrin (25 mumol/kg body weight) in a time-dependent manner. Levels of enzyme activity were increased 2-fold by 8-16 h following treatment and were 6-fold higher than baseline values by 48 h. Administration of cobalt protoporphyrin resulted in a marked increase in heme oxygenase mRNA in the liver. Within 2 h of treatment, mRNA levels had increased 7.9-fold. The induction of heme oxygenase mRNA was maximal at 8 h when the levels were 58.5-fold above baseline. At every time point tested, the increase in heme oxygenase mRNA was several fold greater than that of enzyme activity.  相似文献   

6.
Mechanism of heme degradation by heme oxygenase   总被引:5,自引:0,他引:5  
Heme oxygenase catalyzes the three step-wise oxidation of hemin to alpha-biliverdin, via alpha-meso-hydroxyhemin, verdoheme, and ferric iron-biliverdin complex. This enzyme is a simple protein which does not have any prosthetic groups. However, heme and its two metabolites, alpha-meso-hydroxyhemin and verdoheme, combine with the enzyme and activate oxygen during the heme oxygenase reaction. In the conversion of hemin to alpha-meso-hydroxyhemin, the active species of oxygen is Fe-OOH, which self-hydroxylates heme to form alpha-meso-hydroxyhemin. This step determines the alpha-specificity of the reaction. For the formation of verdoheme and liberation of CO from alpha-meso-hydroxyhemin, oxygen and one reducing equivalent are both required. However, the ferrous iron of the alpha-meso-hydroxyheme is not involved in the oxygen activation and unactivated oxygen is reacted on the 'activated' heme edge of the porphyrin ring. For the conversion of verdoheme to the ferric iron-biliverdin complex, both oxygen and reducing agents are necessary, although the precise mechanism has not been clear. The reduction of iron is required for the release of iron from the ferric iron-biliverdin complex to complete total heme oxygenase reaction.  相似文献   

7.
Heme oxygenase is the rate-limiting enzyme in heme catabolism, and is induced by oxidative stress, foreign and endogenous chemicals, and many trace elements and heavy metals. This study examined the effect of the oxidative state of the heavy metal tin, on heme oxygenase-1 induction in cardiac tissue. Subcutaneous administration of stannous and stannic chloride failed to induce the enzyme in this tissue. Atomic absorption spectroscopy revealed the absence of tin in the heart cells. Investigation of several metal formulations showed that both stannous and stannic citrate were able to enter the bloodstream from the injection site and into heart tissue. Northern blot analysis revealed that heme oxygenase-1 mRNA was elevated several-fold in rat hearts from animals which received either stannous or stannic citrate, and that mRNA levels corresponded with the increase in enzyme activity. The presence of citrate facilitated the transport of the tin ion into the blood stream and possibly across cardiac cell membrane. The stannous ion was more potent as an inducer of heme oxygenase than was the stannic ion.  相似文献   

8.
The effects of single large doses of the porphyrin-heme precursor ?d-aminolevulinic acid on tissue porphyrins and on δ-aminolevulinate synthase and heme oxygenase, the rate-living enzymes of liver heme synthesis and degradation respectively, were studied in the chick embryo in ovo, in the mouse and in the rat. δ-Aminolevulinic acid treatment produced a distinctive pattern characterized by extensive tissue porphyrin accumulation and alterations in these rate-limiting enzymes in the liver. Repression of basal or allylisopropylacetamide-induced liver δ-aminolevulinate synthase was observed and, in the mouse and the rat, induction of liver heme oxygenase after δ-aminolevulinic acid treatment, in a manner similar to the known effects of hemin on these enzymes. In the chick embryo liver in ovo heme oxygenase was substantially higher than in rat and mouse liver, and was not significantly induced by δ-aminolevulinic acid or other compounds, including hemin, CS2 and CoCl2. Levulinic acid, an analogue of δ-aminolevulinic acid, did not induce heme oxygenase in mouse liver. δ-Aminolevunilic acid treatment did not impair ferrochelatase activity but was associated with slight and variable decreases in liver cytochrome P-450. Treatment of chick embryos with a small ‘priming’ dose of 1,4-dihydro-3,5-dicarbethoxycollidine, which impairs liver ferrochelatase activity, accentuated porphyrin accumulation after δ-aminolevulinic acid in the liver. These observations indicate that exogenous δ-aminolevulinic acid is metabolized to porphyrins in a number of tissues and, at least in the liver, to a physiologically significant amount of heme, thereby producing an increase in the size of one or more of the heme pools that regulate both heme systhesis and degradation. It is also possible than when δ-aminolevulinic acid is markedly overproduced in vivo it may be transported to many tissues and re-enter the heme pathway and alter porphyrin-heme metabolism in cells and tissues other than those in which its overproduction primarily occurs.  相似文献   

9.
Sn-protoporphyrin IX (SnPP), an inhibitor of heme oxygenase and a potential therapeutic agent for neonatal hyperbilirubinemia, is bound tightly by hemopexin. The apparent dissociation constant (Kd) at pH 7.4 is 0.25 +/- 0.15 microM, but estimation of the Kd for the SnPP-hemopexin complex is hampered by the fact that at physiological pH SnPP exists as monomers and dimers, both of which are bound by hemopexin. SnPP is readily displaced from hemopexin by heme (Kd less than 1 pM). The hemopexin-SnPP interaction, like that of heme-hemopexin, is dependent on the histidine residues of hemopexin. However, as expected from the differences in the coordination chemistries of tin and iron, the stability of the histidyl-metalloporphyrin complex is lower for SnPP-hemopexin than for mesoheme-hemopexin. Nevertheless, when SnPP binds to hemopexin, certain of the ligand-induced changes in the conformation of hemopexin which increase the affinity of the protein for its receptor are produced. Binding of SnPP produces the conformational change in hemopexin which protects the hinge region of hemopexin from proteolysis, but SnPP does not produce the characteristic increase in the ellipticity of hemopexin at 231 nm that heme does. Competition experiments confirmed that human serum albumin (apparent Kd = 4 +/- 2 microM) has a significantly lower affinity for SnPP than does hemopexin. Appreciable amounts of SnPP (up to 35% in adults and 20% in neonates) would be bound by hemopexin in the circulation, and the remainder of SnPP would be associated with albumin due to the latter's high concentration in serum. Essentially no non-protein-bound SnPP is present. Importantly, SnPP-hemopexin binds to the hemopexin receptor on mouse hepatoma cells with an affinity comparable to that of heme-hemopexin and treatment of the hepatoma cells with SnPP-hemopexin causes a rapid increase in the steady state level of heme oxygenase messenger RNA. These results show that hemopexin participates in the transport of SnPP to heme oxygenase and in its regulation by SnPP.  相似文献   

10.
Effects of selenium compounds on the induction of heme oxygenase in human cells exposed to sodium arsenite or cadmium chloride have been investigated by an immunoblotting technique. Exposure of HeLa cells to arsenite or cadmium ions caused a marked increase in the synthesis of heme oxygenase, and the presence of sodium selenite suppressed the induction. DL-Selenocystine was an effective suppressor, and sodium selenate was less effective. DL-Selenomethionine had no effect. Northern blot analysis showed that selenite abolished the induction of heme oxygenase mRNA in the cells exposed to arsenite or cadmium ions. These results indicated that selenium antagonizes the induction of heme oxygenase by heavy metals ions.  相似文献   

11.
Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.  相似文献   

12.
Relationships between activities of delta-aminolevulinate synthase and heme oxygenase, respectively the rate-limiting enzymes of heme biosynthesis and degradation, have been studied in chick embryo liver cell cultures following exposure of the cultures to glutethimide and iron, a combination known to produce a synergistic induction of both enzymes. In time-course experiments, synergistic induction of heme oxygenase activity by glutethimide and iron preceded that of delta-aminolevulinate synthase by 4 h. Effects of selective inhibitors of both heme synthesis and degradation have also been studied with respect to effects on delta-aminolevulinate synthase and heme oxygenase activities. The synergistic induction of heme oxygenase by glutethimide and iron appears to be dependent upon cellular heme synthesis because addition of inhibitors of heme biosynthesis, 4,6-dioxoheptanoic acid or N-methyl-mesoporphyrin abolishes this synergistic induction. Exposure of cultures to tin-mesoporphyrin, a potent inhibitor of heme oxygenase, prevented the synergistic induction of delta-aminolevulinate synthase produced by glutethimide and iron, or, when added after induction was already established, promptly halted any further induction. These results suggest that the level of activity of heme oxygenase can reciprocally modulate intracellular heme levels and thus activity of delta-aminolevulinate synthase.  相似文献   

13.
14.
15.
16.
17.
Messenger RNA extracted from the livers of normal, phenobarbital-treated, and trans-stilbene oxide-treated rats was translated in a mRNA-dependent protein-synthesizing system. Immunoprecipitation of the translation products by antibodies against the Ya and Yc subunits of glutathione S-transferase detected two polypeptides of molecular weights 23,500 and 25,000. Subsequently, a clone containing glutathione S-transferase sequences was identified from a rat liver double-stranded cDNA library that had been prepared by homopolymeric tailing and cloning into the Pst I site of pBR322. Confirmation of the identity of the clone was obtained by recloning the 550-bp insert DNA into the phage vector M13 and utilizing the single strand recombinant phage DNA in specific hybrid selection of mRNA followed by translation and immunoprecipitation with antibodies to the Ya and Yc subunits. This recombinant phage, M13GST94, was also utilized in a new technique to synthesize 32P-labeled cDNA specific to the glutathione S-transferase insert DNA that was used subsequently in RNA excess solution hybridization to determine the relative concentration of glutathione S-transferase mRNA. Phenobarbital treatment resulted in a 3.2-fold increase in glutathione S-transferase mRNA over levels found in control rats, while trans-stilbene oxide increased glutathione S-transferase mRNA levels 5.7-fold. The DNA sequence of the clone was determined and utilized to propose a partial amino acid sequence.  相似文献   

18.
19.
Heme oxygenase and heme degradation   总被引:5,自引:0,他引:5  
The microsomal heme oxygenase system consists of heme oxygenase (HO) and NADPH-cytochrome P450 reductase, and plays a key role in the physiological catabolism of heme which yields biliverdin, carbon monoxide, and iron as the final products. Heme degradation proceeds essentially as a series of autocatalytic oxidation reactions involving heme bound to HO. Large amounts of HO proteins from human and rat can now be prepared in truncated soluble form, and the crystal structures of some HO proteins have been determined. These advances have greatly facilitated the understanding of the mechanisms of individual steps of the HO reaction. HO can be induced in animals by the administration of heme or several other substances; the induction is shown to involve Bach1, a translational repressor. The induced HO is assumed to have cytoprotective effects. An uninducible HO isozyme, HO-2, has been identified, so the authentic HO is now called HO-1. HOs are also widely distributed in invertebrates, higher plants, algae, and bacteria, and function in various ways according to the needs of individual species.  相似文献   

20.
Estrogen‐induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase‐1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol‐induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down‐regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up‐regulated Mrp3 (348%, P ≤ 0.05). Heme pre‐treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up‐regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol‐treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme‐induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up‐regulation (Mrp2/Mrp4) or down‐regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2‐dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol‐induced cholestasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号