共查询到20条相似文献,搜索用时 9 毫秒
1.
Zhang H Ohyama K Boudet J Chen Z Yang J Zhang M Muranaka T Maurel C Zhu JK Gong Z 《The Plant cell》2008,20(7):1879-1898
Dolichols are long-chain unsaturated polyisoprenoids with multiple cellular functions, such as serving as lipid carriers of sugars used for protein glycosylation, which affects protein trafficking in the endoplasmic reticulum. The biological functions of dolichols in plants are largely unknown. We isolated an Arabidopsis thaliana mutant, lew1 (for leaf wilting1), that showed a leaf-wilting phenotype under normal growth conditions. LEW1 encoded a cis-prenyltransferase, which when expressed in Escherichia coli catalyzed the formation of dolichol with a chain length around C(80) in an in vitro assay. The lew1 mutation reduced the total plant content of main dolichols by approximately 85% and caused protein glycosylation defects. The mutation also impaired plasma membrane integrity, causing electrolyte leakage, lower turgor, reduced stomatal conductance, and increased drought resistance. Interestingly, drought stress in the lew1 mutant induced higher expression of the unfolded protein response pathway genes BINDING PROTEIN and BASIC DOMAIN/LEUCINE ZIPPER60 as well as earlier expression of the stress-responsive genes RD29A and COR47. The lew1 mutant was more sensitive to dark treatment, but this dark sensitivity was suppressed by drought treatment. Our data suggest that LEW1 catalyzes dolichol biosynthesis and that dolichol is important for plant responses to endoplasmic reticulum stress, drought, and dark-induced senescence in Arabidopsis. 相似文献
2.
3.
The unfolded protein response (UPR) has evolved to counter the stresses that occur in the endoplasmic reticulum (ER) as a
result of misfolded proteins. This sophisticated quality control system attempts to restore homeostasis through the action
of a number of different pathways that are coordinated in the first instance by the ER stress-senor proteins IRE1, ATF6 and
PERK. However, prolonged ER-stress-related UPR can have detrimental effects on cell function and, in the longer term, may
induce apoptosis. Connective tissue cells such as fibroblasts, osteoblasts and chondrocytes synthesise and secrete large quantities
of proteins and mutations in many of these gene products give rise to heritable disorders of connective tissues. Until recently,
these mutant gene products were thought to exert their effect through the assembly of a defective extracellular matrix that
ultimately disrupted tissue structure and function. However, it is now becoming clear that ER stress and UPR, because of the
expression of a mutant gene product, is not only a feature of, but may be a key mediator in the initiation and progression
of a whole range of different connective tissue diseases. This review focuses on ER stress and the UPR that characterises
an increasing number of connective tissue diseases and highlights novel therapeutic opportunities that may arise. 相似文献
4.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2019,1864(10):1483-1494
The unfolded protein response (UPR) is a response by the endoplasmic reticulum to stress, classically caused by any disruption to cell homeostasis that results in an accumulation in unfolded proteins. However, there is an increasing body of research demonstrating that the UPR can also be activated by changes in lipid homeostasis, including changes in sphingolipid metabolism. Sphingolipids are a family of bioactive lipids with important roles in both the formation and integrity of cellular membranes, and regulation of key cellular processes, including cell proliferation and apoptosis. Bi-directional interactions between sphingolipids and the UPR have now been observed in a range of diseases, including cancer, diabetes and liver disease. Determining how these two key cellular components influence each other could play an important role in deciphering the causes of these diseases and potentially reveal new therapeutic approaches. 相似文献
5.
ER signaling in unfolded protein response 总被引:11,自引:0,他引:11
Abnormally folded proteins are susceptible to aggregation and accumulation in cells, ultimately leading to cell death. To protect cells against such dangers, expression of various genes including molecular chaperones can be induced and ER-associated protein degradation (ERAD) activated in response to the accumulation of unfolded protein in the endoplasmic reticulum (ER). This is known as the unfolded protein response (UPR). ERAD requires retrograde transport of unfolded proteins from the ER back to the cytosol via the translocon for degradation by the ubiquitin-proteasome system. Hrd1p is a UPR-induced ER membrane protein that acts as a ubiquitin ligase (E3) in the ERAD system. Hrd3p interacts with and stabilizes Hrd1p. We have isolated and identified human homologs (HRD1 and SEL1/HRD3) of Saccharomyces cerevisiae Hrd1p and Hrd3p. Human HRD1 and SEL1 were up-regulated in response to ER stress and overexpression of human IRE1 and ATF6, which are ER stress-sensor molecules in the ER. HEK293T cells overexpressing HRD1 showed resistance to ER stress-induced cell death. These results suggest that HRD1 and SEL1 are up-regulated by the UPR and contribute to protection against the ER stress-induced cell death by degrading unfolded proteins accumulated in the ER. 相似文献
6.
7.
Heintz D Gallien S Compagnon V Berna A Suzuki M Yoshida S Muranaka T Van Dorsselaer A Schaeffer C Bach TJ Schaller H 《Journal of proteome research》2012,11(2):1228-1239
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis. 相似文献
8.
未折叠蛋白质应答 总被引:3,自引:0,他引:3
内质网是真核细胞中蛋白质合成、折叠与分泌的重要细胞器.细胞进化出一套完整的机制来监督和帮助内质网内蛋白质的折叠与修饰.而当错误折叠的蛋白质累积时,细胞通过一系列信号转导途径,对其进行应答,包括增强蛋白质折叠能力、停滞大多数蛋白质的翻译、加速蛋白质的降解等.如果内质网功能素乱持续,细胞将最终启动凋亡程序.这些反应被统称为未折叠蛋白质应答(unfolded protein response,UPR).UPR是多个信号转导通路的总称,包括IRE1-XBP1、PERK-ATF4以及ATF6等信号途径.除了应激条件外,UPR还被用于正常生理条件下的调节,例如胆固醇合成代谢的负反馈调控. 相似文献
9.
Redox signaling loops in the unfolded protein response 总被引:1,自引:0,他引:1
The endoplasmic reticulum (ER) is the first compartment of secretory pathway. It plays a major role in ER chaperone-assisted folding and quality control, including post-translational modification such as disulfide bond formation of newly synthesized secretory proteins. Protein folding and assembly takes place in the ER, where redox conditions are distinctively different from the other organelles and are favorable for disulfide formation. These reactions generate the production of reactive oxygen species (ROS) as a byproduct of thiol/disulfide exchange reaction among ER oxidoreductin 1 (Ero1), protein disulfide isomerase (PDI) and ER client proteins, during the formation of disulfide bonds in nascent or incorrectly folded proteins. When uncontrolled, this phenomenon perturbs ER homeostasis, thus aggravating the accumulation of improperly folded or unfolded proteins in this compartment (ER stress). This results in the activation of an adaptive mechanism named the unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER-resident membrane proteins (PERK, IRE1 and ATF6) and regulates the expression of the UPR target genes, which themselves encode ER chaperones, folding enzymes, pro-apoptotic proteins and antioxidants, with the objective of restoring ER homeostatic balance. In this review, we will describe redox dependent activation (ER) and amplification (cytosol) loops that control the UPR and the consequences these regulatory loops have on cell fate and physiology. 相似文献
10.
ER stress and the unfolded protein response 总被引:29,自引:0,他引:29
Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer's disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs. 相似文献
11.
In addition to serving as the entry point for newly translated polypeptides making their way through the secretory pathway, the endoplasmic reticulum (ER) also synthesizes many lipid components of the entire endomembrane system. A report published in this issue implicates a signaling pathway known to respond to ER unfolded protein load in the control of phospholipid biosynthesis by the organelle (Sriburi et al., 2004). The reasonable notion that demand for ER membrane is integrated with protein processing capacity was initially suggested by genetic analysis of yeast. The new data lend direct support for this idea and imply interesting mechanistic possibilities for how this coupling develops. 相似文献
12.
Seema Nundlall M. Helen Rajpar Peter A. Bell Christopher Clowes Leo A. H. Zeeff Benjamin Gardner David J. Thornton Raymond P. Boot-Handford Michael D. Briggs 《Cell stress & chaperones》2010,15(6):835-849
Multiple epiphyseal dysplasia (MED) can result from mutations in matrilin-3, a structural protein of the cartilage extracellular matrix. We have previously shown that in a mouse model of MED the tibia growth plates were normal at birth but developed a progressive dysplasia characterised by the intracellular retention of mutant matrilin-3 and abnormal chondrocyte morphology. By 3 weeks of age, mutant mice displayed a significant decrease in chondrocyte proliferation and dysregulated apoptosis. The aim of this current study was to identify the initial post-natal stages of the disease. We confirmed that the disease phenotype is seen in rib and xiphoid cartilage and, like tibia growth plate cartilage is characterised by the intracellular retention of mutant matrilin-3. Gene expression profiling showed a significant activation of classical unfolded protein response (UPR) genes in mutant chondrocytes at 5 days of age, which was still maintained by 21 days of age. Interestingly, we also noted the upregulation of arginine-rich, mutated in early stage of tumours (ARMET) and cysteine-rich with EGF-like domain protein 2 (CRELD2) are two genes that have only recently been implicated in the UPR. This endoplasmic reticulum (ER) stress and UPR did not lead to increased chondrocyte apoptosis in mutant cartilage by 5 days of age. In an attempt to alleviate ER stress, mutant mice were fed with a chemical chaperone, 4-sodium phenylbutyrate (SPB). SPB at the dosage used had no effect on chaperone expression at 5 days of age but modestly decreased levels of chaperone proteins at 3 weeks. However, this did not lead to increased secretion of mutant matrilin-3 and in the long term did not improve the disease phenotype. We performed similar studies with a mouse model of Schmid metaphyseal chondrodysplasia, but again this treatment did not improve the phenotype. 相似文献
13.
14.
Hoozemans JJ van Haastert ES Eikelenboom P de Vos RA Rozemuller JM Scheper W 《Biochemical and biophysical research communications》2007,354(3):707-711
Parkinson's disease (PD) is, at the neuropathological level, characterized by the accumulation of misfolded proteins. The presence of misfolded proteins can trigger a cellular stress response in the endoplasmic reticulum (ER) called the Unfolded Protein Response (UPR). The UPR has been shown to be involved in cellular models for PD. In this study, we investigated UPR activation in the substantia nigra of control and PD patients. Immunoreactivity for the UPR activation markers phosphorylated pancreatic ER kinase (pPERK) and phosphorylated eukaryotic initiation factor 2alpha (peIF2alpha) is detected in neuromelanin containing dopaminergic neurons in the substantia nigra of PD cases but not in control cases. In addition, pPERK immunoreactivity is colocalized with increased alpha-synuclein immunoreactivity in dopaminergic neurons. These data show that the UPR is activated in PD and that UPR activation is closely associated with the accumulation and aggregation of alpha-synuclein. 相似文献
15.
The unfolded protein response (UPR) is a signaling pathway from the endoplasmic reticulum (ER) to the nucleus that protects cells from the stress caused by misfolded or unfolded proteins [1, 2]. As such, ER stress is an ongoing challenge for all cells given the central biologic importance of secretion as part of normal physiologic functions. This is especially the case for cells that are highly dependent upon secretory function as part of their major duties. Within mucosal tissues, the intestinal epithelium is especially dependent upon an intact UPR for its normal activities [3]. This review will discuss the UPR and the special role that it provides in the functioning of the intestinal epithelium and, when dysfunctional, its implications for understanding mucosal homeostasis and intestinal inflammation, as occurs in inflammatory bowel disease (IBD). 相似文献
16.
Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis 总被引:19,自引:0,他引:19 下载免费PDF全文
Wang R Tischner R Gutiérrez RA Hoffman M Xing X Chen M Coruzzi G Crawford NM 《Plant physiology》2004,136(1):2512-2522
A nitrate reductase (NR)-null mutant of Arabidopsis was constructed that had a deletion of the major NR gene NIA2 and an insertion in the NIA1 NR gene. This mutant had no detectable NR activity and could not use nitrate as the sole nitrogen source. Starch mobilization was not induced by nitrate in this mutant but was induced by ammonium, indicating that nitrate was not the signal for this process. Microarray analysis of gene expression revealed that 595 genes responded to nitrate (5 mm nitrate for 2 h) in both wild-type and mutant plants. This group of genes was overrepresented most significantly in the functional categories of energy, metabolism, and glycolysis and gluconeogenesis. Because the nitrate response of these genes was NR independent, nitrate and not a downstream metabolite served as the signal. The microarray analysis also revealed that shoots can be as responsive to nitrate as roots, yet there was substantial organ specificity to the nitrate response. 相似文献
17.
Zhou Lina Gao Xiaoyu Weits Daan A. Zeng Peng Wang Xinyu Cai Jing 《Plant and Soil》2021,467(1-2):531-547
Plant and Soil - Hydrogen sulfide (H2S) is an important signaling molecule in prokaryotes and eukaryotes. In higher plants, H2S regulates different processes throughout development and stress... 相似文献
18.
To cope with the accumulation of unfolded or misfolded proteins the endoplasmic reticulum (ER) has evolved specific signalling pathways collectively called the unfolded protein response (UPR). Elucidation of the mechanisms governing ER stress signalling has linked this response to the regulation of diverse physiologic processes as well as to the progression of a number of diseases. Interest in hereditary haemochromatosis (HH) has focused on the study of proteins implicated in iron homeostasis and on the identification of new alleles related with the disease. HFE has been amongst the preferred targets of interest, since the discovery that its C282Y mutation was associated with HH. However, the discrepancies between the disease penetrance and the frequency of this mutation have raised the possibility that its contribution to disease progression might go beyond the mere involvement in regulation of cellular iron uptake. Recent findings revealed that activation of the UPR is a feature of HH and that this stress response may be involved in the genesis of immunological anomalies associated with the disease. This review addresses the connection of the UPR with HH, including its role in MHC-I antigen presentation pathway and possible implications for new clinical approaches to HH. 相似文献
19.
The ubiquitously expressed molecular chaperone GRP78 (78 kDa glucose-regulated protein) generally localizes to the ER (endoplasmic reticulum). GRP78 is specifically induced in cells under the UPR (unfolded protein response), which can be elicited by treatments with calcium ionophore A23187 and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase inhibitor TG (thapsigargin). By using confocal microscopy, we have demonstrated that GRP78 was concentrated in the perinuclear region and co-localized with the ER marker proteins, calnexin and PDI (protein disulphide-isomerase), in cells under normal growth conditions. However, treatments with A23187 and TG led to diminish its ER targeting, resulting in redirection into a cytoplasmic vesicular pattern, and overlapping with the mitochondrial marker MitoTracker. Cellular fractionation and protease digestion of isolated mitochondria from ER-stressed cells suggested that a significant portion of GRP78 is localized to the mitochondria and is protease-resistant. Localizations of GRP78 in ER and mitochondria were confirmed by using immunoelectron microscopy. In ER-stressed cells, GRP78 mainly localized within the mitochondria and decorated the mitochondrial membrane compartment. Submitochondrial fractionation studies indicated further that the mitochondria-resided GRP78 is mainly located in the intermembrane space, inner membrane and matrix, but is not associated with the outer membrane. Furthermore, radioactive labelling followed by subcellular fractionation showed that a significant portion of the newly synthesized GRP78 is localized to the mitochondria in cells under UPR. Taken together, our results indicate that, at least under certain circumstances, the ER-resided chaperone GRP78 can be retargeted to mitochondria and thereby may be involved in correlating UPR signalling between these two organelles. 相似文献
20.
Man Liu 《Channels (Austin, Tex.)》2018,12(1):335-345
Human heart failure is characterized by arrhythmogenic electrical remodeling consisting mostly of ion channel downregulations. Reversing these downregulations is a logical approach to antiarrhythmic therapy, but understanding the pathophysiological mechanisms of the reduced currents is crucial for finding the proper treatments. The unfolded protein response (UPR) is activated by endoplasmic reticulum (ER) stress and has been found to play pivotal roles in different diseases including neurodegenerative diseases, diabetes mellitus, and heart disease. Recently, the UPR is reported to regulate multiple cardiac ion channels, contributing to arrhythmias in heart disease. In this review, we will discuss which UPR modulators and effectors could be involved in regulation of cardiac ion channels in heart disease, and how the understanding of these regulating mechanisms may lead to new antiarrhythmic therapeutics that lack the proarrhythmic risk of current ion channel blocking therapies. 相似文献