首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In 1997 and 1998 the stimulation of hatch of potato cyst nematodes (PCN) by a trap crop was studied at various times during the growing season in a container and a field experiment. Solanum nigrum‘90‐4750‐188’was used as the trap crop in both experiments and was sown on 1 May, 16 June or 1 August in two successive years on different plots. Neither experiment revealed much seasonal variation in hatchability of PCN juveniles under a trap crop. In the container experiment, the hatch of the Globodera pallida Pa3 population was equally and strongly stimulated (89%) at all sowing dates in both years, except for the 1 August sowing in 1998 (when the hatch was 77% under extremely wet soil conditions). In the control treatment with non‐hosts (flax followed by barley) the total spontaneous hatch was 50% over 2 yr. In the field experiment, the hatch of PCN, averaged over the four populations, was also equally stimulated (71%) at all sowing dates in both years. In the control treatment with non‐hosts (flax‐barley) the total spontaneous hatch was 36% over 2 yr. Total hatch under the trap crop over 2 yr varied between the four PCN populations from 63% to 80%. In 1998 and 1999, control of potato cyst nematodes (PCN) by the potential trap crops Solanum sisymbriifolium and S. nigrum‘90‐4750‐188’was studied in the field. Potato was also included as a trap crop. In the 1998 experiment, potato, S. sisymbriifolium and S. nigrum strongly stimulated the hatch of PCN compared with the non‐host white mustard (Sinapis alba). Roots of potato and white mustard were mainly found in the top 10 cm of soil, whereas roots of S. sisymbriifolium and S. nigrum were also abundant at depths of 10–20 cm and 20–30 cm. In the 1999 experiment, soil infestation with PCN decreased markedly with potato and S. sisymbriifolium as trap crops. In plots moderately to severely infested with 2‐yr old cysts (2–29 juveniles ml?1 air dried soil), potato reduced soil infestation by 87% and S. sisymbriifolium by 77%. In plots moderately to severely infested with 1‐yr old cysts the reductions were 74% and 60%, respectively. The reduction was least on plots very severely infested with PCN (110–242 juveniles ml?1 soil): 69% and 52% for potato and S. sisymbriifolium, respectively. Soil infestations of plots that were initially slightly to severely infested with the root‐knot nematode Meloidogyne hapla were greatly reduced under fallow and S. sisymbriifolium but increased under potato. From these and previous experiments it was concluded that, for several reasons, S. sisymbriifolium is a promising trap crop.  相似文献   

2.
Solanum sisymbriifolium is a trap crop for potato cyst nematodes (PCN). In this study, we quantified the effect of different periods of growth of S. sisymbriifolium and root length density on hatching of Globodera pallida, using potato and fallow treatments as references. One‐year‐old and 2‐year‐old G. pallida cysts were used in greenhouse experiments carried out in containers over 2 years. Two methods were used in study hatching. In the first method, 7.5‐cm‐diameter soil cores were removed and backfilled with infested soil. In the second method, cysts were buried in nylon bags. The soil cores infested with cysts used in the first method had very poor root colonisation as compared to surrounding bulk soil. Therefore, the effect of S. sisymbriifolium was strongly underestimated by the soil core method. Hatching of PCN juveniles from cysts, measured with the nylon bag method, increased with the duration of growth of S. sisymbriifolium from 47% after 6 weeks of crop growth up to 75% after 21 weeks of crop growth. Reductions per depth layer were also correlated with root length density and varied between 42.6% at 0.26 cm cm?3 and 85.3% at 5.8 cm cm?3. Based on a single exponential decay function, a general method is presented to estimate for any PCN management measure the average reduction in the number of years needed to ensure that the PCN population falls below a given density. Calculated reductions in the number of years ranged from 2.3 years for 59% hatching (equivalent to 90 days of S. sisymbriifolium) to 4.4 years for 75% of hatching (equivalent to 150 days of S. sisymbriifolium). These reductions were independent of initial and final population density. Our results corroborate the hatch‐inducing effect of S. sisymbriifolium, underline the importance of growth duration and root length density as determinants of the reduction in PCN population that can be achieved and draw attention to the pitfall in methodology that can arise in the study of hatch stimulation.  相似文献   

3.
Ninety accessions of non‐tuber bearing Solanaceae were screened for (i) resistance to and (ii) stimulatory effect on juvenile hatch of potato cyst nematodes, and (iii) their growth under temperate climatic conditions. All plant species belonging to the genus Solanum tested induced hatching but this effect was most pronounced for plant species of the Solanum nigrum complex. Hatching of juveniles was hardly or not stimulated by other plant genera of the Solanaceae. Solanum sisymbriifolium combined a high hatching effect with complete resistance to both Globodera rosiochiensis and G pallida. Two S. nigrum varieties showed full resistance to G rostochiensis and a high level of resistance to G pallida. Moreover, S. sisymbriifolium and the two varieties of S. nigrum performed very well under Dutch field conditions and, therefore, they are suggested as candidate trap crops for the control of potato cyst nematodes.  相似文献   

4.
Hatching of potato cyst nematodes is induced by root exudates of Solanaceae, such as Solanum sisymbriifolium, and is therefore related to root length distribution of this crop. A mathematical model was derived to relate the hatching potential to root length density (RLD). A series of field experiments was carried out to study actual root length distribution of S. sisymbriifolium in relation to shoot properties and to provide input into the model. Using a modified Poisson distribution formula for the three‐dimensional distribution of roots in a volume of soil, the relation between the zone of influence of hatching agents and the RLD could be derived. On this basis, the minimal RLD was estimated, which is needed to expose 75%, 90% or 95% of cysts to root exudates, as a function of the length of the zone of influence of hatching agents on cysts. The logarithm of the total root length showed a linear relation with the logarithms of above‐ground biomass and with leaf area index. Root diameter distribution was the same for all crops examined and independent of soil depth. Fine roots (<0.4 mm in diameter) constituted around 50% of total root length. Using a zone of influence of 1.00, 0.75 and 0.50 cm around the centre of each root, a minimal RLD for sufficient soil exploration (75%) was estimated. Depth at which that minimal RLD was exceeded was linearly related to total root length (km m?2) and to above‐ground crop biomass, enabling estimations being made of the potential hatching efficacy as related to measurable properties of S. sisymbriifolium crops. The proposed approach to derive potential hatching effects from crop properties needs further validation; particularly, the distance of influence of root exudates is a critical factor.  相似文献   

5.
The potato cyst nematode, Globodera pallida, is one of the most important pests of potato worldwide. Owing to regulatory considerations and potential environmental impact, control options for this nematode are becoming increasingly limited. Solanum sisymbriifolium and biological control agents offer viable alternative options for controlling G. pallida. Therefore, experiments were conducted to determine the effect of the nematode trap crop S. sisymbriifolium, alone or in combination with the biocontrol agents Trichoderma harzianum or Plectosphaerella cucumerina, on population decline of G. pallida. Experiments were conducted for three different ‘cropping systems’: potato (Solanum tuberosum), S. sisymbriifolium, or soil only (fallow), each followed by a potato crop. Soil was amended with P. cucumerina, T. harzianum or left unamended, and then infested with nematodes at a rate of five eggs g?1 of soil. After 16 weeks in the greenhouse, plants were removed and the soil containing cysts was refrigerated at 4°C for 8 weeks, and then planted to potato. Cysts of G. pallida were counted after an additional 16‐week period. The Pf/Pi of G. pallida was significantly reduced by 99% in potato following S. sisymbriifolium compared to both the potato‐following‐fallow and the potato‐following‐potato treatments. Amendment of soil with T. harzianum significantly reduced Pf/Pi of G. pallida by 42–47% in the potato‐following‐potato but not in either the potato‐after‐fallow nor in the potato‐after‐S. sisymbriifolium cycles which supports evidence that the plant species may play a role in the biocontrol activity of this fungus. Addition of the fungus P. cucumerina resulted in a 64% decrease in Pf/Pi in the potato‐following‐fallow in one experiment, and an 88% decrease in Pf/Pi in potato‐following‐potato but the decrease in Pf/Pi was not consistent over all experiments. However, both biocontrol fungi resulted in lower numbers of progeny cysts after an initial 16‐week incubation with potato. To look at the effect of varied population density of the nematode on efficacy of S. sisymbriifolium to reduce G. pallida populations, potato, S. sisymbriifolium, or barley were planted into soil infested with G. pallida at rates of 5, 20 or 40 eggs g?1 soil applied as cysts (20, 80 or 160 cysts pot?1). After 16 weeks, numbers of cysts produced in each treatment were determined for each infestation rate. No new cysts were recovered from either S. sisymbriifolium or barley treatments, confirming that neither plant is a host for G. pallida. High numbers of cysts were recovered with potato. Soil from each treatment (containing original cysts and newly‐formed cysts when present) were then planted with potato. After an additional 16 weeks, few cysts were found in the potato‐after‐ S. sisymbriifolium treatments regardless of initial infestation rate. When potato followed barley, numbers of cysts were similar to those found after a single cycle of potato, indicating that the barley crop had no effect on the survival of initial inoculum. Overall, these results suggest that S. sisymbriifolium has potential to significantly reduce G. pallida populations, and also that the cropping system (i.e. the sequence of non‐host and host plants) may play a significant role in the efficacy of fungal biological control agents.  相似文献   

6.
A field experiment in which main‐crop potatoes were grown every other year was conducted on a sandy soil from 1994 to 1999. The aim of the experiment was to control soil‐borne pathogens of potato with ecologically sound methods. Potato grown as a trap crop from the end of April to the end of June (8 wk) was used to control potato cyst nematodes (PCN) (Globodera pallida), and its effects on other important soil pathogens and on the growth of a subsequent potato crop were also assessed. Additional experimental treatments were a potato crop from which the haulm was removed and a green manure crop. Three potato cultivars with different degrees of resistance to PCN were grown as the main crop. Duplicate sets of the experiment were run concurrently. The PCN were effectively controlled by the potato trap crop. When a highly resistant potato cultivar was grown as a main crop after the trap crop, the post‐harvest soil infestation was very low. When a moderately resistant cultivar was grown after the trap crop the soil infestation also remained low. When the trap crop was alternated with a susceptible potato cultivar as a main crop, soil infestation increased slightly, but the degree of control when compared with no trap crop averaged 96%. Soil infestation with root‐knot nematodes (mainly Meloidogyne hapla) increased when potato was grown as a trap crop, but soil infestation with the root‐lesion nematode Pratylenchus crenatus was not affected. Stem canker caused by Rhizoctonia solani was not affected by the trap crop but black scurf (sclerotia of R. solani) on tubers was reduced. Soil infestation with Verticillium dahliae declined in one of the duplicate sets of the experiment but not in the other. However, stem infections by V. dahliae were significantly decreased in both sets, although the effect depended on the PCN‐resistance level of the potato cultivar. When a highly resistant potato cultivar was grown Verticillium stem infections were not significantly affected, they were decreased with a moderately resistant cultivar but the decrease was most pronounced with a PCN‐susceptible cultivar. Senescence of a following potato crop was not influenced by the trap crop when a highly PCN‐resistant cultivar was grown, but it was delayed in the case of a moderately resistant or a susceptible cultivar, resulting in higher tuber yields for those cultivars. The experiment proved that a trap crop can be an alternative to chemical soil disinfection but, for several reasons, the potato itself is not an ideal crop for this purpose; a trap crop other than potato must be developed.  相似文献   

7.
8.
A two-year in-situ phytoremediation trial was launched in Shenyang Zhangshi (Sewage) Irrigation Area (SZIA). The phytoremediation efficiency of Solanum nigrum L. was determined, by both monitoring the change of soil Cadmium level in the upper 20 cm of soil, and calculating the plant uptake of soil Cd. After two years experimental, by monitoring the soil Cd concentrations, The Cd concentrations decreased on average from 2.75 mg kg?1to 2.45 mg kg?1 in the first year and from 2.33 mg kg?1 to 1.53 mg kg?1 in the second year, amounting to a decrease by a factor of 10.6% in the first year and 12% in the second year. After two years phytoremediation by S. nigrum, Cd concentrations of the seven experimental plots with S. nigrum growth decreased from 2.75 mg kg?1 to 1.53 mg kg?1, a decrease by a factor of 24.9%. And the soil Cd concentration decreased only 2.1% and 1.7% in the bared experimental plot. And the calculating of Cd uptake by S. nigrum shown that, the plants uptake 4.46% and 5.18% of the total soil Cd in 2008 and 2009, while the soil Cd concentrations decreased by a factor of 10.6% in 2008 and 12.1% in 2009.  相似文献   

9.
Cd hyperaccumulator Solanum nigrum L. was a promising plant used to simultaneously remediate Cd-PAHs combined pollution soil through its extra accumulation capacity and rhizosphere degradation. This article compared the strengthening remediation role of cysteine (Cys), glycine (Gly) and glutamic acid (Glu) with EDTA and TW80. The results showed that the addition of 0.03 mmol L?1 Cys, Gly, and Glu didn't significantly impact (p < 0.05) shoot biomass of S. nigrum, but obviously increased Cd concentration. Therefore, Cd capacity (µg pot?1) in shoots of S. nigrum was significantly increased (p < 0.05) by 37.7% compared to the control without reagent added. At the meantime, the PAHs degradation ratio in rhizoshpere was increased by 34.5%. Basically, the improving role of Cys, Gly, and Glu was higher than EDTA and TW80. The main reasons of enhanced the accumulation of S. nigrum to Cd might lie in the addition of Cys, Gly, and Glu which reduced pH and increased extractable Cd concentration in rhizosphere and phytochelatines (PCs) concentration in leaves. As for the degradation of PAHs in rhizosphere, increased microorganism number might be play important role.  相似文献   

10.
The influence of various cadmium concentrations on organic acid levels in leaves of the Cd hyperaccumulator, Solanum nigrum L. and a closely related species, Solanum melongena L., were investigated. In particular, the relationship of organic acids with Cd accumulation in the two plants was investigated. The results showed that Cd accumulation in the shoots of S. nigrum was significantly higher than that of S. melongena. The accumulation of Cd in the leaves of S. nigrum ranged from 2.0 to 167.8 μg g−1 dry weight (DW), but only from 1.2 to 64.0 μg g−1 DW in S. melongena. Solanum melongena was considerably less tolerant to Cd than S. nigrum. Approximately 20% of the total Cd in S. nigrum leaves was water-soluble, suggesting that some accumulated Cd was associated with water-soluble compounds such as organic acids. Malic acid in the leaves of S. nigrum was the most abundant organic acid [up to 115.6–145.7 μmol g−1 fresh weight (FW)], but this acid was not significantly affected by the Cd concentration in soil. However, the level of malic acid in S. melongena plants was much lower, only 16.3–75.4 μmol g−1 FW. The significant positive correlations between total Cd and water-soluble Cd concentrations and both acetic and citric acid concentrations in the leaves of S. nigrum were observed. In contrast, there was no correlation between concentrations of the two acids and Cd concentrations in the leaves of S. melongena. These results indicated that acetic and citric acids in the leaves of S. nigrum might be related to its Cd hyperaccumulation.  相似文献   

11.
Aims: To select and evaluate an appropriate outer membrane (OM) permeabilizer to use in combination with the highly muralytic bacteriophage endolysin EL188 to inactivate (multi‐resistant) Pseudomonas aeruginosa. Methods and Results: We tested the combination of endolysin EL188 and several OM permeabilizing compounds on three selected Ps. aeruginosa strains with varying antibiotic resistance. We analysed OM permeabilization using the hydrophobic probe N‐phenylnaphtylamine and a recombinant fusion protein of a peptidoglycan binding domain and green fluorescent protein on the one hand and cell lysis assays on the other hand. Antibacterial assays showed that incubation of 106Ps. aeruginosa cells ml?1 in presence of 10 mmol l?1 ethylene diamine tetraacetic acid disodium salt dihydrate (EDTA) and 50 μg ml?1 endolysin EL188 led to a strain‐dependent inactivation between 3·01 ± 0·17 and 4·27 ± 0·11 log units in 30 min. Increasing the EL188 concentration to 250 μg ml?1 further increased the inactivation of the most antibiotic resistant strain Br667 (4·07 ± 0·09 log units). Conclusions: Ethylene diamine tetraacetic acid disodium salt dihydrate was selected as the most suitable component to combine with EL188 in order to reduce Ps. aeruginosa with up to 4 log units in a time interval of 30 min. Significance and Impact of the Study: This in vitro study demonstrates that the application range of bacteriophage encoded endolysins as ‘enzybiotics’ must not be limited to gram‐positive pathogens.  相似文献   

12.
Control of the rootknot nematode meloidogyne javanica by Bacillus cereus   总被引:1,自引:0,他引:1  
Exposure of Meloidogyne javanica second‐stage juveniles to the bacterium Bacillus cereus in soil inhibited the penetration of the juvenile nematodes into tomato roots. Culture filtrate of the bacterium grown on nutrient broth and tryptic soy broth revealed nematocidal activity on M. javanica juveniles and eggs. Loss of the nematocidal activity of the media by lowering pH, boiling or dialysis raised the possibility that the active ingredient in the culture filtrate was ammonia, released during the breakdown process of peptides in the media by bacterial activity. Free ammonia (NH3) concentrations in the nutrient broth and tryptic soy broth culture filtrates measured after 48 h were 140 and 190 µg ml?1 respectively. Exposure of second‐stage juveniles to 9.3 µg ml?1 ammonia for 40 h in vitro was lethal to 95% of the nematode population. In a nitrate medium, nitrite accumulated up to 250 µg ml?1 during the growth of the bacterium, and its culture filtrate revealed nematocidal activity. The nematocidal activity of the bacterium increased when the bacterium was applied with various proteinaceous supplements to soil. Soil treated with the bacteria and peptone showed an earlier nematocidal activity than either the bacteria or peptone applied alone, and also had a higher level of ammonia than the individual treatments. However, the level of ammonia was lower than the lethal level for second‐stage juveniles recorded in vitro. The nematocidal activity exhibited by the bacterium‐proteinaceous amendment combination is not fully understood; the ammonia released during protein degradation by the bacterium may contribute significantly to the recorded nematocidal activity.  相似文献   

13.
A pot culture experiment was used to determine the differences in uptake characteristics of a cadmium hyperaccumulator Solanum nigrum L. discovered in China, an ecotype from Melbourne, Australia and a non-hyperaccumulator Solanum melogena. Australian ecotype was not significantly different to the China ecotype. In particular, Cd concentration in leaves and shoots of S. nigrum collected from Australia were 166.0 and 146.3 mg kg?1 respectively when 20 mg kg?1 Cd spiked, and were not significantly different to the ecotype imported from China which had 109.8 and 85.3 mg kg?1 respectively, in the stems and leaves. In contrast, the tolerance of the eggplant to Cd was significantly less than the two S. nigrum ecotypes. Although some morphological properties of S. nigrum collected from Australia were different from that of the plants collected from China, Cd hyperaccumulator characteristics of two ecotypes were similar. The results suggested that the tolerance and uptake of Cd may be a constitutive trait of this species.  相似文献   

14.
Black nightshade (Solanum nigrum, S. nigrum L.) and red nightshade ( Solanum villosum, S. villosum Mill.) are medicinal plants from the Solanaceae family that synthesize glycoalkaloids and other secondary metabolites. To recognize the potential insecticide activity of these compounds, leaf extracts (containing glycoalkaloid and methanol fractions) were tested for enzyme inhibition, antifeedant activity and toxicity. For in‐vitro glutathione S‐transferase (GST) inhibition activity, we used insecticide‐resistant Colorado potato beetle, Leptinotarsa decemlineata ( L. decemlineata; Say) midgut and fat‐body homogenate. In‐vivo toxicity and the antifeedant activity were performed using larval bioassays. The methanol extracts had greater GST inhibitory activity compared to the glycoalkaloids, as well as greater 2nd instar larvae mortality and antifeedant activity. Furthermore, the green leaf volatile compound, cis‐hex‐3‐enyl acetate, at the concentration of 5 ppm, caused 50% mortality of 2nd instar larvae. Our findings suggest the potential usefulness of S. nigrum and S. villosum extracts to control L. decemlineata.  相似文献   

15.
Root extracts of black nightshade (Solanum nigrum) were analyzed for activity against isolates ABA‐31 and ABA‐104 of Alternaria brassicicola, the causal agent of black leaf spot of Chinese cabbage (Brassica pekinensis). Preliminary results showed that dried root tissues of black nightshade extracted with 70% ethanol contained antifungal properties against A. brassicicola. Ethanol root extracts were used for further fractionations using ethyl acetate, n‐butanol and water. Among the three extracts, the n‐butanol fraction showed the strongest antifungal activity by its suppression of conidial germination of A. brassicicola. The n‐butanol extract of S. nigrum roots was fractionated further into six fractions (I–VI). Among the six fractions tested, fraction V showed a strong inhibitory effect on conidial germination of A. brassicicola and thereby suppressed lesion development of black leaf spot of Chinese cabbage at a concentration of 25 ppm or higher. Nuclear magnetic resonance analysis indicated that fraction V contained a mixture of saponins, and results of further bio‐guided fractionation and bioassay suggested that saponins in fraction V were key chemical components in the control of A. brassicicola. The potential of using black nightshade for developing natural products for the control of fungal plant diseases is discussed.  相似文献   

16.
Batatasin‐III (3,3‐dihydroxy‐5‐methoxybibenzyl) is a phenolic compound associated with the allelopathic effect of the evergreen dwarf shrub Empetrum nigrum, and has been referred to as the causal factor for the species being successful in dominating extensive ecosystems. Yet, only a few plant species have been tested for their response to batatasin‐III, and little is known about whether environmental factors modify this allelopathic effect. In this study, we tested the inhibitory effect of purified batatasin‐III through bioassays on 24 vascular plant species and, for certain species, we tested if this effect depended on growth substrate (mineral vs organic substrate), pH, and fertilization. Moreover, we tested if batatasin‐III predicted the allelopathic effect of E. nigrum by analyzing the inhibitory effect of E. nigrum leaves and humus in relation to their batatasin‐III content. Our results confirmed batatasin‐III as a stable compound capable of inhibiting germination and/or mean root elongation in all of the tested species, but this effect was modified by growth substrate. Surprisingly, the measured batatasin‐III content of E. nigrum leaves (mean value 19.7 ± 10.8 (SE) mg g?1) and humus (mean value of 1 ± 1.5 (SE) μg g?1) did not predict the inhibitory effect on mean root elongation. Although batatasin‐III was found to be phytotoxic to all the tested species, we conclude that this substance alone should not be used as a proxy for the allelopathic effect of E. nigrum.  相似文献   

17.
The Andean potato weevil Premnotrypes suturicallus Kuschel (Coleoptera: Curculionidae) is one of the most damaging potato (Solanum spp.) pests in the Andes. The objective of this study was to get a better understanding of weevil infestation sources and its distribution in potato fields as well as on the effect of potato cropping intensity and farmers’ harvest practices on weevil infestation to provide better clues for its management. For this purpose, a methodology was developed to assess weevil field densities in potato. A Taylor’s power law indicated that 177 and 69 samples are necessary to assess low (0.5 weevils/m2) and high (5 weevils/m2) weevil densities for a moderate reliability or precision level (D = 0.5). In potato fields, overwintering weevil densities were highest at field borders with 3.5 weevils/m2 at a distance of <2.5 m compared to 0.7 weevils/m2 at distances >10 m from the field border. No effects of time of harvest could be detected on soil overwintering weevil densities. The quantification of the larval density per potato plant after harvest showed that fields after 2‐year potato rotations had eight times more overwintering weevils compared to 1‐year rotations. Weevil infestation sources were mainly potato fields with the highest infestation (89%) followed by olluco (Ullucus tuberosus) and oat (Avena sativa) fields having volunteer potato plants (35%). The results confirm and support previous assumptions about the importance of the cropping systems for Andean potato weevil infestation and management. The confirmation that weevils do not occur or only in neglected numbers on fallow fields supports the use of plastic barriers to effectively exclude migrating flightless adult weevils to potato fields cultivated after fallow. The distribution of overwintering weevils indicates that farmers could concentrate efforts to control adult weevils mainly to the first meters of potato fields.  相似文献   

18.
Eight trials were carried out in 2011 and 2012 in Northern Italy to evaluate the efficacy of grafting, compost and biofumigation with Brassica carinata against Colletotrichum coccodes on tomato. Four trials were carried out in commercial farms, and four trials were carried out in plastic tunnels at an experimental centre. The rootstocks ‘Armstrong’, ‘Arnold’, ‘Beaufort’, ‘Big Power’, ‘Brigeor’, ‘Emperador’, ‘King Kong’, ‘Spirit’ and ‘Superpro V295’ were tested. Host plants included several tomato F1 hybrids: ‘Amantino’, ‘Arawak’, ‘CLX 37438’, ‘Cauralina’, ‘CU 8301’, ‘CU 8506’, ‘DRK 7021’, ‘E 34431’, ‘E 50070’, ‘EXP’, ‘Gotico’, ‘Ingrid’, ‘ISI 61401’, ‘ISI 61402’, ‘Profitto’, ‘Punente’, ‘Rugantino’ and ‘Tomahawk’. Tomato roots from the control plots were 34 to 87% diseased in both naturally and artificially infested soil. Among the nineteen commercial tomato hybrids tested, in the presence of a very high disease pressure in a naturally infested soil, ‘Rugantino’ was the least affected by C. coccodes, showing 32% infected roots. ‘Tomahawk’ grafted onto ‘Arnold’, ‘Armstrong’ and ‘Superpro V295’ was significantly less affected by C. coccodes, while ‘Arawak’ grafted onto ‘Armstrong’, ‘Arnold’, ‘Emperador’ and ‘Beaufort’ provided very good control of root rot in the different trials. Compost addition and biofumigation with Brassica pellets were also tested with and without grafting. Soil amendment with compost, in the case of the ‘Arawak’ and ‘Tomahawk’, resulted in a slightly improved disease control only on non‐grafted plants. When grafting and biofumigation were combined in a soil naturally infested with C. coccodes and Meloidogyne arenaria, biofumigation did not improve C. coccodes control in comparison with grafting alone. In a naturally infested soil, compost alone and combined with biofumigation improved disease control only on non‐grafted ‘Tomahawk’ plants. In general, grafting by itself provided very good results in terms of disease control, which were not significantly improved by combination with compost and/or biofumigation.  相似文献   

19.
Deficiency of P and sometimes of micronutrients, especially Fe, is of importance to the calcicole–calcifuge behaviour of plants. Calcifuge species are unable to solubilize these elements or keep them metabolically active in sufficient amounts on calcareous soils. To demonstrate if calcicole, calcifuge and ‘soil indifferent’ species differ in Fe nutrition dynamics, samples of such species were transplanted on a slightly acid silicate soil (pH BaCl2 ca 4.0) and on a calcareous soil (pH BaCl2 ca 7.2). Plants were grown in a computer‐controlled greenhouse at a soil moisture content of 50–60% water holding capacity and with additional light (ca 160 μE s?1 m?2, 12 h d?1) if ambient light was <120 μE s?1 m?2.
The calcifuge species developed chlorosis when grown on the calcareous soil, whereas the other species did not. Calcareous‐soil grown plants had less 1,10‐phenanthroline extractable Fe in their leaf tissues than the silicate‐grown plants whereas total leaf Fe showed more species specific properties. The ratio of 1,10‐phenanthroline extractable to total Fe in the leaves was significantly lower in the calcifuges than in the calcicoles when grown on the calcareous soil. ‘Soil indifferent’ species did not differ much from the calcicoles. Root Fe, fractioned as DCB extractable ‘plaque’ on the root surface and Fe remaining in the root after DCB extraction, showed no distinct pattern of DCB‐Fe related to the different categories, but remaining root Fe tended to be lower in the calcifuges compared to the two other categories. Leaf colour estimated by a colour scale correlated well with chlorophyll a+b content measured in the leaves of two calcifuges. Leaf P concentrations did not differ between the different categories but were more species dependent.
We conclude that chlorosis in calcifuge species is related to an immobilization of Fe in physiologically less active forms in the tissue, if plants are forced to grow on a calcareous soil, whereas calcicole and ‘soil indifferent’ species are able to retain a much higher share of their leaf Fe in metabolically active form. This probably decreases the vitality and may exclude calcifuge plants from calcareous soil. We consider this property, previously almost unconsidered in an ecological context, as important to the calcifuge–calcicole behaviour of plants.  相似文献   

20.
Eight trials were conducted in commercial potato fields infested with the white potato cyst nematode (wPCN, Globodera pallida) and one in a field infested with the yellow PCN (yPCN, Globodera rostochiensis). Our aims were to produce data to validate and refine a computer‐based program (The Model) for the long‐term management of PCN, to determine nematicide effectiveness and to assess rates of PCN population decline between potato crops. Prior to planting, each farmer applied an overall nematicide treatment to his field, except for ten untreated plots that were widely spaced to encompass a range of PCN population densities. Each untreated plot was paired with a similar plot in the adjacent treated area and all plots were intensively sampled for PCN population densities at planting (Pi) and again at harvest (Pf) when tuber yields were determined. Four trials were re‐sampled 2–4 years later to determine PCN population decline rates. Regressions that form the basis of ‘The Model’ and described the relationship between Pi and tuber yield and PCN population density at harvest were fitted to the results from both the untreated and nematicide treated plots. These regressions also enabled us to estimate the yield potential at each site in the absence of PCN and showed that nematicide treatment generally did not increase yield potential and that both tuber yield and PCN multiplication decreased with increasing Pi. However, there were major differences between sites and cultivars. When untreated, the yield of cv. Maris Piper was hardly affected in a highly organic soil with Pi > 200 eggs g?1 whereas the yield of partially resistant cv. Santé was decreased from a potential of c. 60 t ha?1 to c. 20 t ha?1 in a light silt with Pi = 20 egg g?1 soil. Similarly, untreated wPCN multiplication rates at a low Pi ranged from 46‐fold to >100‐fold. Nematicide effectiveness was estimated from the regressions and, at several sites, yield was decreased despite nematicide treatment. Control of wPCN multiplication was even poorer. In only two of seven trials planted with susceptible cultivars was more than 50% control achieved – maximum populations in treated plots usually exceeded 250 eggs g?1. Partially resistant Santé decreased the multiplication rate of wPCN in the two trials where it was planted. An alternative analysis using Genstat indicated that The Model tended to underestimate the maximum multiplication rate and overestimate the maximum population density. When four sites were re‐sampled 2–4 years after harvest the populations of wPCN had declined by between 15% and 33.5% per annum with a mean of 26% per annum. Modelling indicated that rotations longer than 8 years were required to control wPCN unless other effective control measures, such as growing a partially resistant cultivar, were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号