首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eight hours after intracerebral injection of a double-labeled 3-ketoceramide4, [1-14C]lignoceroyl 3-keto [1-3H]sphingosine, various brain sphingolipids were isolated. Free ceramide and the ceramide portions of nonhydroxy cerebroside and sphingomyelin were further fractionated into subgroups containing longer-chain or shorter-chain fatty acids. Nonhydroxy ceramide, nonhydroxy cerebroside and sphingomyelin containing longer-chain fatty acids had significant quantities of radioactivity with 3H/14C ratios similar to each other but lower than that of the injected material. The sphingolipids containing shorter-chain fatty acids were also significantly labeled; however, the 3H/14C ratios were much higher than that of the injected material. Hydroxy-ceramide and sulfatides contained very little radioactivity. However, hydroxy-cerebroside contained an amount of radioactivity comparable to that of the longer-chain nonhydroxy cerebroside with a similar 3H/14C ratio. It is proposed that the injected 3-ketoceramide was converted into ceramide, cerebroside, and sphingomyelin and that the fatty acids of these lipids were partly replaced by other fatty acids during the metabolic conversions.  相似文献   

2.
Except for epidermis and liver, little is known about endogenous expression of 1-O-acylceramides (1-OACs) in mammalian tissue. Therefore, we screened several organs (brain, lung, liver, spleen, lymph nodes, heart, kidney, thymus, small intestine, and colon) from mice for the presence of 1-OACs by LC-MS2. In most organs, low levels of about 0.25–1.3 pmol 1-OACs/mg wet weight were recorded. Higher levels were detected in liver, small and large intestines, with about 4–13 pmol 1-OACs/mg wet weight. 1-OACs were esterified mainly with palmitic, stearic, or oleic acids. Esterification with saturated very long-chain fatty acids, as in epidermis, was not observed. Western-type diet induced 3-fold increased 1-OAC levels in mice livers while ceramides were unaltered. In a mouse model of Farber disease with a decrease of acid ceramidase activity, we observed a strong, up to 50-fold increase of 1-OACs in lung, thymus, and spleen. In contrast, 1-OAC levels were reduced 0.54-fold in liver. Only in lung 1-OAC levels correlated to changes in ceramide levels - indicating tissue-specific mechanisms of regulation. Glucosylceramide synthase deficiency in liver did not cause changes in 1-OAC or ceramide levels, whereas increased ceramide levels in glucosylceramide synthase-deficient small intestine caused an increase in 1-OAC levels. Deficiency of Dgat1 in mice resulted in a reduction of 1-OACs to 30% in colon, but not in small intestine and liver, going along with constant free ceramides levels. From these data, we conclude that Dgat1 as well as lysosomal lipid metabolism contribute in vivo to homeostatic 1-OAC levels in an organ-specific manner.  相似文献   

3.
The metabolism of sphingomyelins and ceramides with defined labeled fatty acids was compared after injection in vivo or incubation with cultured cells. The liver was the major site of uptake of sphingomyelins and ceramides with 18:2 or 16:0 fatty acids, but with both sphingolipids a higher recovery of radioactivity was found with 16:0 species. The distribution of radioactivity among liver lipids showed that 1.5 h after injection of 18:2 sphingomyelin, only 21% of the label was found as sphingomyelin, and this value was 37% in the case of 16:0 sphingomyelin. There was a very marked difference in the metabolism of 18:2 and 16:0 ceramides. After injection of 18:2 ceramide only 14% of the radioactivity was recovered as sphingomyelin, and this value was more than 50% with 16:0 ceramide. [14C]18:2 ceramide was converted also to glucoceramide and hydrolyzed more extensively than 16:0 ceramide. These observations were extended to sphingomyelins and ceramides with other fatty acids, using Hep-G2 cells in culture. Significantly more radioactivity was recovered as labeled sphingomyelin after incubation with 16:0, 18:0, 20:0 and 24:0 sphingomyelins than with 18:1 and 18:2 sphingomyelins, while more labeled phosphatidylcholine and phosphatidylethanolamine were found with the unsaturated sphingomyelins. In analogy to the findings in vivo, in the Hep-G2 cells more 16:0, 18:0 and 24:0 ceramides were converted to sphingomyelin than 18:1 or 18:2 ceramides. These differences were also seen with cultured macrophages, in which a more marked reutilization for sphingomyelin formation was found with the saturated ceramide series. The sphingomyelin liposomes were tested also for their capacity to mobilize cholesterol, and a rise in plasma unesterified cholesterol occurred after injection of 18:2 sphingomyelin. Marked enhancement of cholesterol efflux from cholesterol ester-loaded macrophages was also seen with 18:1 and 18:2, 20:0 sphingomyelin in the presence of delipidated high-density lipoprotein. The present results demonstrate that the metabolic fate of sphingolipids is related to their fatty acid composition. While ceramides with saturated fatty acids are predominantly reutilized for sphingomyelin formation, those with unsaturated fatty acids undergo probably more rapid hydrolysis with liberation of fatty acids and channeling into glycerolipids.  相似文献   

4.
Abstract: Sphingolipid metabolic pathways in the peripheral nerves of dysmyelinating Trembler mice were studied in vivo, using intraneurally injected [3H]palmitate as the exogenous substrate. The kinetic analysis of the experimental data obtained for the mutant revealed that, as in normal nerves, two metabolically and kinetically independent pathways are implicated in the biosynthesis of the major peripheral nerve sphingolipids: the ceramide pathway and another pathway in which there is no detectable labeled intermediate ("direct amidification"). The results also show that, in the Trembler mouse sciatic nerves: (a) The severely deficient sphingolipid biosynthesis results from the constitution of a qualitatively and quantitatively abnormal fatty acid substrate pool destined for metabolism via the ceramide pathway, which ensures the totality of the galactocerebroside labeling and two-thirds of that of sphingomyelin. The ceramide intermediates of this pathway are labeled only on their fatty acyl moiety, which contains only 16-carbon atom chains. (b) "Direct amidification" events implicated in sphingolipid labeling are decreased compared with normal and account for the remaining sphingomyelin formation.  相似文献   

5.
The neutral sphingolipids and gangliosides were isolated from 62- and 63-day-old chicken livers and characterized. The total concentration of neutral sphingolipids was 59 nmol/g of liver, and that of gangliosides was 330 nmol/g of liver. The major neutral sphingolipids were free ceramide, galactosylceramide, glucosylceramide, lactosylceramide, galabiosylceramide, and Forssman glycolipid. Galactosylceramide was the most abundant and free ceramide was the second most abundant. The major gangliosides were sialosylgalactosylceramide (GM4) and sialosyllactosylceramide (GM3), each of which contained only N-acetylneuraminic acid as a sialic acid. Sphingosine (d18:1) was a major long-chain base in all the sphingolipids. Considerable amounts of 2-hydroxy fatty acids were present in free ceramide, galactosylceramide, and GM4.  相似文献   

6.
Fumonisin B1 is a mycotoxin produced by Fusarium moniliforme, a common fungus in corn. It is known to cause a variety of diseases, including hepatic and renal degeneration in many species of laboratory and domestic animals. The known biochemical events in fumonisin B1 toxicity involve inhibition of ceramide synthase leading to disruption of sphingolipid metabolism. The effect of fumonisin B1 on ceramide and more complex sphingolipids in mice is not known. Groups of five male BALB/c mice each were injected with fumonisin B1 subcutaneously at doses of 0, 0.25, 0.75, 2.25, and 6.75 mg/kg body weight daily for 5 days. This protocol has been shown to produce a dose-dependent increase in apoptosis in liver and kidney of these animals. In the present study, liver, kidney, and brain were sampled and analyzed for free sphingoid bases and complex sphingolipids one day after the last treatment. A dose-related accumulation of free sphinganine and sphingosine was observed in liver and kidney, but not brain. The maximal increase in free sphinganine in kidney was 10-fold greater than in liver. Total phospholipids increased only in liver, whereas ceramide levels were not consistently altered in liver, kidney, or brain. In liver and kidney, fumonisin B1 treatment increased the sphinganine-containing complex sphingolipids, but no effect was observed on sphingosine-containing complex sphingolipids. No changes in complex sphingolipids were observed in brain. In liver, there was a close correlation between the extent of free sphinganine accumulation, and apoptosis and hepatopathy. This correlation was also evident in kidney but to a lessor extent. Nonetheless, the apoptosis and nephropathy occurred with little or no change in the levels of ceramide or more complex sphingolipids. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 281–289, 1998  相似文献   

7.
Blood fatty acids are an important parameter for the synthesis of brain myelin as exogenous stearic acid is needed: after subcutaneous injection to 18-day-old mice this labelled stearic acid is transported into brain myelin and incorporated into its lipids. However the acid is partly metabolized in the brain by elongation (thus providing very long chain fatty acids, mainly lignoceric acid) or by degradation to acetate units (utilized for synthesis of medium chain fatty acids as palmitic acid, and cholesterol). These metabolites are further incorporated into myelin lipids. The myelin lipid radioactivity increases up to 3 days; most of the activity is found in phospholipids; their fatty acids are labelled in saturated as well as in polyunsaturated homologues but sphingolipids, especially cerebrosides, contain also large amounts of radioactivity (which is mainly found in very long chain fatty acids, almost all in lignoceric acid). The occurrence of unesterified fatty acids must be pointed out, these molecules unlike other lipids, are found in constant amount (expressed in radioactivity per mg myelin lipid).  相似文献   

8.
Short-term experiments in whichl-cycloserine, the inhibitor of 3-ketodihydrosphinogosine synthase, was injected subcutaneously in young mice have shown that cerebroside synthesis is inhibited specifically. Studies on the effect of long terml-cycloserine treatment on sphingolipid synthesis were performed to determine whether mice could tolerate continued cerebroside reduction and whether or not the synthesis of other sphingolipids would be inhibited.l-cycloserine, when injected at a low dose for a period of two months resulted in significantly reduced brain cerebroside level with little or no reduction in sulfatide, ganglioside, or sphingomyelin levels; liver and spleen glucocerebroside levels were also significantly reduced. The rate of cerebroside synthesis in brain was greatly reduced, whereas synthesis of sulfatides was much less affected byl-cycloserine indicating that a portion of newly synthesized galactocerebroside is shunted to synthesis of sulfatides.  相似文献   

9.
The ceramide analog, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, inhibits the glucosylation of ceramide and thus, by virtue of the normal catabolism of the higher glucosphingolipids, leads to a general depletion of cellular glucolipids. In a previous study with chronic administration of this inhibitor in mice, it was found that the kidneys and liver, particularly the former, grew more poorly than the organs of control mice. This study shows that the inhibitor produces rapid decreases in glucolipid concentration in kidney which are maintained for at least 5 days without noticeable harm. The changes were enhanced by inclusion of L-cycloserine in the injection scheme. Cycloserine blocks ketosphinganine synthase and thus slows the synthesis of all sphingolipids. However, sphingomyelin levels did not drop significantly in this study. The glucosyltransferase inhibitor also produced a small decrease in kidney beta-D-glucuronidase and distinct increases in the levels of glucocerebrosidase, galactocerebrosidase and sphingomyelinase. It also produced a small but distinct decrease in the level of glucosyltransferase, after a delay of a few hours, possibly because the inhibitor was metabolized to a covalently inactivating product. Comparison with kidney, liver and brain showed that the kidney was more sensitive to the action of the morpholino inhibitor.  相似文献   

10.
The neutral sphingolipids from chicken erythrocytes were characterized. The total concentration of neutral sphingolipids was found to be 480 nmol/g of dry stroma. They were isolated and purified by droplet counter-current chromatography, Iatrobeads column chromatography, and preparative thin-layer chromatography. The major neutral sphingolipids were free ceramide, ceramide monohexoside, ceramide dihexoside, and ceramide pentahexoside, which represented 43%, 23.5%, 10.0%, and 3.6% of the long chain bases, respectively. Thus, free ceramide was the most abundant neutral sphingolipid in chicken erythrocytes. Ceramide monohexoside was composed of more galactosylceramide than glucosylceramide. Galabiosylceramide was found in the ceramide dihexoside fraction together with lactosylceramide. Ceramide pentahexoside was a Forssman glycolipid. There were two groups of neutral sphingolipids; one had mainly C16 fatty acid and the other had C22 and C24 fatty acids. In both groups sphingosine (d18:1) was predominant as a long chain base. 2-Hydroxy-C16 fatty acid was a major component of one of the ceramide monohexosides.  相似文献   

11.
The relative content of phosphatidylcholine is lower and that of sphingomyelin is higher in transplantable fast growing mouse hepatoma-22, thus decreasing their ratio approximately 2.5-fold versus normal liver. The ceramide content and the neutral sphingomyelinase activity is markedly higher (3- and 6.5-fold, respectively), whereas the acid sphingomyelinase activity is 4-fold lower in hepatoma-22 versus normal liver. The content of saturated fatty acids in ceramide and sphingomyelin of hepatoma-22 is higher than in normal liver. All sphingolipids of hepatoma-22 contain a considerable amount (25-37%) of sphinganine (dihydrosphingosine) along with sphingenine (sphingosine), whereas sphingolipids of normal liver contain predominantly sphingenine (over 95%). These results indicate that the activity of enzymes involved in sphingolipid biosynthesis and catabolism is disturbed in the transplantable mouse hepatoma-22 compared to normal liver.  相似文献   

12.
Ceramide is a precursor for complex sphingolipids in vertebrates, while plants contain phytoceramide. By using a novel chromatography purification method we show that phytoceramide comprises a significant proportion of animal sphingolipids. Total ceramide including phytoceramide from mouse tissue (brain, heart, liver) lipid extracts and cell culture (mouse primary astrocytes, human oligodendroglioma cells) was eluted as a single homogenous fraction, and then analyzed by thin layer chromatography, and further characterized by gas chromatography-mass spectrometry (GC-MS). We detected a unique band that migrated between non-hydroxy fatty acyl ceramide and hydroxy fatty acyl ceramide, and identified it as phytoceramide. Using RT-PCR, we confirmed that mouse tissues expressed desaturase 2, an enzyme that has been reported to generate phytoceramide from dihydroceramide. Previously, only trace amounts of phytoceramide were reported in vertebrate intestine, kidney, and skin. While its function is still elusive, this is the first report of phytoceramide characterization in glial cells and vertebrate brain, heart, and liver.  相似文献   

13.
Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is the lipid hydrolase responsible for the degradation of ceramide into sphingosine and free fatty acids within lysosomes. The enzymatic activity was first identified over four decades ago, and is deficient in the inherited lipid storage disorder, Farber Lipogranulomatosis (Farber disease). Importantly, AC not only hydrolyzes ceramide into sphingosine, but also can synthesize ceramide from sphingosine and free fatty acids in vitro and in situ. This "reverse" enzymatic activity occurs at a distinct pH from the hydrolysis ("forward") reaction (6.0 vs. 4.5, respectively), suggesting that the enzyme may have diverse functions within cells dependent on its subcellular location and the local pH. Most information concerning the role of AC in human disease stems from work on Farber disease. This lipid storage disease is caused by mutations in the gene encoding AC, leading to a profound reduction in enzymatic activity. Recent studies have also shown that AC activity is aberrantly expressed in several human cancers, and that the enzyme may be a useful cancer drug target. For example, AC inhibitors have been used to slow the growth of cancer cells, alone or in combination with other established, anti-oncogenic treatments. Aberrant AC activity also has been described in Alzheimer's disease, and overexpression of AC may prevent insulin resistant (Type II) diabetes induced by free fatty acids. Current information concerning the biology of this enzyme and its role in human disease is reviewed within.  相似文献   

14.
Antigen-specific T-cell factors (TCF) play a role in the initiation of cellular immune responses. In allogeneic mouse-tumor models lymphocytes from the direct tumor surroundings of both euthymic and nude mice produce TCF. These lymphocytes produce TCF when collected already 1 day after subcutaneous (sc) injection of tumor cells. In contrast to euthymic mice, draining lymph nodes and spleen of nude mice did not contain TCF-producing lymphocytes at any stage after sc tumor cell injection. In sensitized euthymic mice TCF production by lymphocytes is significantly higher in the direct tumor surroundings than in draining lymph nodes or spleen. At 2 and 5 days after tumor cell injection, the mononuclear cell infiltrate of the tissue surrounding the tumor in euthymic mice showed low expression of Thy 1, CD3, TCR alpha beta, TCR gamma delta, CD4, CD8, and asialo GM1, whereas several lymphocytes and mast cells were positive for monoclonal antibody (mAb) 14-30 (directed against TCF). In both euthymic and nude mice, sc injected tumor cells showed apoptosis. In conclusion, the direct tumor surroundings are the first (and, for nude mice, the only) site of TCF production, sc injection of tumor cells attracts mAb 14-30-positive lymphocytes and renders mast cells positive for mAb 14-30.  相似文献   

15.
Obesity increases the risk for hepatic steatosis. Recent studies have demonstrated that high fat diet (HFD) may affect sphingolipid formation in skeletal muscles, heart, and other tissues. In this work we sought to investigate whether HFD feeding provokes changes in content and fatty acids (FAs) composition of sphingomyelin and ceramide at the level of liver and hepatic nuclei. Furthermore, we investigated whether the ceramide formation is related to the activity of either neutral sphingomyelinase (N-SMase) or acidic sphingomyelinase (A-SMase). Three weeks of HFD provision induced pronounced ceramide and sphingomyelin accumulation in both liver and hepatic nuclei, accompanied by increased activity of N-SMase but not A-SMase. Furthermore, a shift toward greater FAs saturation status in these sphingolipids was also observed. These findings support the conclusion that HFD has a major impact on sphingolipid metabolism not only in the liver, but also in hepatic nuclei.  相似文献   

16.
Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.  相似文献   

17.
Acid ceramidase (N-acylsphingosine deacylase, EC 3.5.1.23; AC) is the lipid hydrolase responsible for the degradation of ceramide into sphingosine and free fatty acids within lysosomes. The enzymatic activity was first identified over four decades ago, and is deficient in the inherited lipid storage disorder, Farber Lipogranulomatosis (Farber disease). Importantly, AC not only hydrolyzes ceramide into sphingosine, but also can synthesize ceramide from sphingosine and free fatty acids in vitro and in situ. This “reverse” enzymatic activity occurs at a distinct pH from the hydrolysis (“forward”) reaction (6.0 vs. 4.5, respectively), suggesting that the enzyme may have diverse functions within cells dependent on its subcellular location and the local pH. Most information concerning the role of AC in human disease stems from work on Farber disease. This lipid storage disease is caused by mutations in the gene encoding AC, leading to a profound reduction in enzymatic activity. Recent studies have also shown that AC activity is aberrantly expressed in several human cancers, and that the enzyme may be a useful cancer drug target. For example, AC inhibitors have been used to slow the growth of cancer cells, alone or in combination with other established, anti-oncogenic treatments. Aberrant AC activity also has been described in Alzheimer's disease, and overexpression of AC may prevent insulin resistant (Type II) diabetes induced by free fatty acids. Current information concerning the biology of this enzyme and its role in human disease is reviewed within.  相似文献   

18.
Obese-hyperglycaemic mice and lean mice were injected with dichloroacetate to determine the significance of gluconeogenesis in maintaining the hyperglycaemia of obese mice and to investigate the effects of a fall in blood glucose on fatty acid synthesis. One hour after the second of two, hourly, injections of dichloroacetate the blood glucose concentrations in fed and starved lean mice were decreased, whereas in obese mice they were sharply increased. In obese and lean mice, both fed and starved, dichloroacetate decreased plasma lactate but insulin was unchanged. The quantity of liver glycogen was decreased in all dichloroacetate treated mice, with the largest falls in fed and starved obese mice, which had much larger glycogen stores than lean mice. Dichloroacetate treatment decreased the concentration of plasma non-esterified fatty acids in fed and starved obese mice and fed lean mice but not in starved lean mice. Fatty acid synthesis in white (inguinal, subcutaneous) adipose tissue was stimulated by dichloroacetate in fed obese mice and inhibited in fed lean mice. Fatty acid synthesis in brown adipose tissue (scapular) was faster than in white adipose tissue and was less affected by dichloroacetate although the changes were in the same direction as in white adipose tissue. We attribute the increased hyperglycaemia of obese mice treated with dichloroacetate to increased glycogenolysis coupled with a failure to secrete additional insulin in response to the raised blood glucose. This high blood glucose concentration in dichloroacetate treated obese mice may in turn explain the increased fatty acid synthesis in their white adipose tissue.  相似文献   

19.
Chronic secretion of interleukin-6 (IL-6) in mice causes metabolic alteration in the liver, leading to increased synthesis of hepatic cholesterol and fatty acids (FA). Mice were injected with allogeneic tumor cells transduced with the murine IL-6 gene. During the 3 wk after tumor inoculation, elevated serum IL-6 levels were associated with increased spleen and liver weight. Histological examination of sections from the liver showed increased hepatocyte proliferation, resulting in liver enlargement. Body composition analysis revealed that IL-6 caused a significant loss in fat tissue without affecting lean body mass and water content. Hepatic de novo synthesis of FA and cholesterol, as measured by (3)H(2)O incorporation, was three to five times as high in mice secreting IL-6 (IL-6 mice) as in pair-fed mice bearing nonsecreting tumors. This increase in FA and cholesterol synthesis is sufficient to maintain hepatic triglyceride secretion at levels comparable with those of pair-fed mice bearing nonsecreting tumors and, presumably, is the main source of cholesterol and FA-phospholipids necessary for hepatocyte proliferation.  相似文献   

20.
Sphingolipid metabolism in Bacteroideaceae.   总被引:6,自引:0,他引:6  
The lipid composition of the anaerobic Bacteroides thetaiotaomikron has been analyzed. Sphingomyelin, ceramide phosphinicoethanolamine, free even-numbered and branched chain sphingosine bases and ceramide represented about 50% of the total lipid extract. The main ester phospholipid was phosphatidylethanolamine. The alkali-stable sphingophospholipids were predominantly N-acylated with 3-hydroxypalmitic acid, whereas the ester phospholipids are preferentially substituted with normal even and odd-numbered and branched-chain fatty acids. When Bacteroides was grown in a medium supplemented with labelled palmitic acid, this fatty acid was utilized for acylation reactions and to a large extent for the de novo synthesis of sphinganine. This long-chain base was incorporated into the sphingolipids and was also present in free form. The 3-hydroxypalmitic acid present in sphingolipids is not derived from palmitic acid, since labelled palmitate did not serve as a precursor. Free sphinganine added to the culture medium was also utilized efficiently for the biosynthesis of the sphingolipids by growing Bacteroides cultures. The 3H/14C ratio in sphingomyelin and ceramide phosphinicoethanolamine is the same, when [1-14C]palmitic acid and [3-3H]sphinganine serve as precursors. Sphingomyelin, which is usually only present in higher animals, is synthesized de novo in this Bacteroides strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号