首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A mutation in an allele identified as ilvJ662 causes the expression of acetohydroxy acid synthase activity that is resistant to feedback inhibition by L-valine. The ilvJ662 allele was transduced as an unselected marker into a strain, CU1126 (ilvB, ilvHI), deficient in acetohydroxy acid synthase activity. The ilvJ662 allele appears to code for a new acetohydroxy acid synthase activity (acetohydroxy acid synthase IV), with physical, kinetic, and physiological properties distinct from the other three isozymes.The catalytic function of acetohydroxy acid synthase IV is highly stable at 37° C in the presence or absence of ethylene glycol. However, sensitivity to feedback inhibition by valine is rapidly lost at 37° C, but this property is somewhat stabilized by ethylene glycol. The rate of synthesis of acetohydroxy acid synthase IV is uniquely repressed by either leucine or isoleucine. These results suggest that the ilvJ + allele is cryptic for acetohydroxy acid synthase IV, an isozyme distinct from the other acetohydroxy acid synthases.  相似文献   

2.
Summary Two genes involved in the enzymatic conversion of D-alanine to pyruvate are described, alnA and alnR. The alnA gene, located between ara and leu, is probably the structural gene for alaninase. The alnR gene, which can be cotransduced with thr but not with leu, could be demonstrated to be a regulatory gene with the aid of a mutation resulting in permanent repression and a thermosensitive revertant of this mutation restoring inducibility at 28°C, but not at 42°C.  相似文献   

3.
Summary Spontaneous mutants (146) of Escherichia coli K-12 were selected that were resistant to inhibition of growth by 1.2 mM L-valine (Valr). The Valr isolates, containing acetohydroxy acid synthase resistant to feedback inhibition by L-valine (AHASr), were classed according to cotransduction of the mutation with leu. Several mutations resulting in an AHASr phenotype were found to be cotransducible with glyA. However, no mutations causing a Valr phenotype were linked to ilv. AHAS activity was more closely examined in representatives of three classes of mutants with Valr linked to leu, labeled ilv-660, ilv-661, and ilv-662. The ilvE503 allele in E. coli K-12, known to cause a two- to three-fold derepression of AHAS, was found to affect regulation of synthesis of both valine-sensitive AHAS (AHASs) and AHASr in the mutants containing ilv-660 and ilv-661, whereas it affected repression of AHASs, only, in the mutant containing ilv-662. Further, both AHASs and AHASr in the ilv-661 mutant were repressed by valine, whereas valine did not repress AHASr synthesis in the strain carrying ilv-660 and only partially repressed AHASr in the strain carrying ilv-662. Unexpectedly, AHASr synthesis in strains carrying ilv-660 or ilv-662 was repressible by leucine. The ilv-660 locus appears to be similar in position to ilvH and encodes a product that confers valine-sensitivity upon AHAS activity in the wild-type E. coli K-12. The ilv-660 and ilv-662 loci may normally encode products that influence both the feedback sensitivity of AHAS and control of AHAS biosynthesis.  相似文献   

4.
Summary Specialized transducing lines of phage carrying segments between thr and car from the E. coli chromosome have been isolated. With help of these phages it has been shown that the gene sup S20 (Böck et al., 1974) corresponds to rpsT, the structural gene for ribosomal protein S20.  相似文献   

5.
Summary Allele transfer (conversion) was analyzed in transformations with a CmR determining hybrid plasmid, which contained a chromosomal gene controlling threonine prototrophy. In transformations, where a thr +-cell was transformed with the thr - plasmid, the chromosomal allele was efficiently converted to the plasmid genotype. This process of gene conversion was rec dependent and greatly enhanced when monomeric rather than unfractionated plasmid DNA was used.  相似文献   

6.
Summary A fine structure analysis of the threonine operon in Escherichia coli K-12 was performed by deletion mapping. Lambda transducing bacteriophages carrying various parts of the threonine operon were isolated from strains in which the lacZ gene was fused to a thr gene. We tested for recombination between deletions of the threonine promotor extending into the threonine operon, carried by the phage, and bacterial thr auxotrophs. The relative order of thrO (operator) mutations was established. We propose that an operator region is located between a promoter region and the structural genes. Mutations leading to the desensitization of the aspartokinase I-homoserine dehydrogenase I towards threonine were localized in two different regions of the thrA gene.  相似文献   

7.
Escherichia coli recombinant strains bearing the thr operon have been previously selected for threonine production and phenotypically classified according to antibiotic resistance properties (Nudel et al. 1987).Further analysis of those strains permitted the isolation and restriction mapping of two different plasmids of 13 kb and 18.6 kb. The smaller one, which expressed tetracycline resistance gave better results on threonine accumulation but it was rather unstable when grown without antibiotic pressure. Therefore, other hosts were transformed with those plasmids to improve stability.A threonine-auxotrophic strain was a better host for plasmid maintenance and expression of thr operon. Host influence in plasmid-mediated threonine production was studied in terms of specific yields (the ratios of threonine accumulated to biomass values) and of plasmid maintenance (percent of AprTcr clones after cultivation in non selective media).We also determined that semisynthetic media of defined composition were better than rich media for threonine expression, due to feed-back controls exerted by undesired catabolites accumulated in complex media.  相似文献   

8.
We have generated three hybridomas producing rat monoclonal antibodies to a surface antigen, ThB, that is shared by murine B lymphocytes and approximately 50 percent of murine thymocytes. These antibodies, produced by immunizations with MOPC-104E cells, appear to recognize the same antigen that was previously detected by rabbit and goat antisera to MOPC-104E cells (Yutoku et al. 1974, Yutoku et al. 1976).Using these antibodies, we have studied a genetic polymorphism that is associated with the level of ThB expression on B lymphocytes but not with the antigen's expression on thymocytes. We present evidence that this trait is controlled by one gene,Thb, which we find to be very closely linked to the gene or genes controlling the Ly-6, Ly-8, DAG, and Ala 1 antigen(s). While the latter four antigens were described as markers on mature T (or activated T and B) lymphocytes, ThB is restricted to immature thymocytes and all B cells. ThB is not expressed on kidney, although some investigators (McKenzie et al. 1977 a, Halloran et al. 1978) report Ly-6 expression on that tissue. SJL/J, C57BL/10JHz, DBA/2J, and AKR/J are among the mouse strains carrying theThb h allele, while BALB/cN, CBA/J, C3H.SW/SnHz, and A/J carry theThb l allele. The ThB antigen has not yet been identified as a glycoprotein after cell-surface iodination, NP-40 solubilization, and immunoprecipitation.This work was supported in part by grants from the National Institutes of Health (AI-08917, CA-04681, GM-17367).  相似文献   

9.
The β-isopropylmalate dehydrogenase (β-IPMDH) gene of Acetobacter aceti No. 1023, which complemented the leuB mutation of Escherichia coli, was cloned and expressed in E. coli. Plasmids pCAL1 and pCAL4, carrying a 5.44 kilobase pairs (kb) HindIII-fragment in the opposite orientation, conferred the same β-IPMDH activity as that of the wild type strain of E. coli. Restriction mapping and deletion analysis indicated that the β-IPMDH gene was located on a 1.65 kb AatII-HindIII fragment. Plasmids pMVL1 and pMVL2, composing the cloned β-IPMDH gene and plasmid pMV102, a plasmid indigenous to Acetobacter, were constructed as plasmid cloning vectors which allow selection of leu+ transformants in an A. aceti leu- host. The A. aceti leu- host was obtained through the insertional inactivation occurring as a result of homologous recombination between the chromosome of A. aceti and the cloned β-IPMDH gene, which was disrupted by insertion of the kanamycin resistance gene from pACYC177 into the BamHI site in the AatII-HindIII fragment. This system constitutes a relatively simple technique for gene disruption or replacement in Acetobacter that requires a single transformation.  相似文献   

10.
The major histocompatibility complex (MHC) class II region of ruminants appears to have a structure broadly similar to that of the human class II or HLA-D region. Restriction fragment length polymorphism (RFLP) studies of class II genes in cattle (Andersson et al. 1988; Anderson and Rask 1988; Sigurdardottir et al. 1988, 1991 b), and in sheep (Scott et al. 1987), have provided an estimate of the number and type of class II genes in these species. The subsequent cloning and sequencing of sheep and cattle class II genes (Muggli-Cockett and Stone 1989; Groenen et al. 1990; van der Poel et al. 1990; Andersson et al. 1991; Scott et al. 1991 a, b; Ballingall et al. 1992; Sigurdardottir et al. 1991 a, 1992), have demonstrated that they are highly homologous to their human counterparts. Of more interest, therefore, are loci within the ruminant MHC which differ from the HLA class II region.Three distinguishing features of the ruminant class II region described to date are, firstly, the apparent absence of a DP-like isotype, secondly, the variability in the number of DQ genes between haplotypes (Andersson and Rask 1988), and thirdly, the presence of class II genes presumed to be unique to the ruminant (Andersson et al. 1988). The presence of two such genes, designated DYA and DYB, was deduced from RFLP studies of cattle DNA. These genes were shown to segregate together with the DOB gene in one region separated by a recombination distance of 17 cM from the region which contains the DQA, DQB, DRB, DRA, and C4 loci (Andersson et al. 1988). Subsequently, Bota-DYA was cloned from a phage library and sequenced (van der Poel et al. 1990; Acc. Nos. m30119 and m30118). The sequence of part of a similar gene in the goat, obtained by PCR by using primers derived from the cattle sequence, has recently been reported (Mann et al. 1993; Acc. No. m94325). However, there has been no report of the cloning of a B gene partner for the DYA gene. A novel cattle class II B gene designated Bota-DIB was cloned from a phage library and sequenced by Stone and Muggli-Cockett (1990). This was shown to be a single copy gene of limited polymorphism, which on the basis of RFLP analysis was probably not Bota-DYB but did appear to be distinct from other known cattle class II genes. The species distribution of this B gene was shown to be restricted to Cervidae, Giraffidae, and Bovidae (Stone and Muggli-Cockett 1993). However, it is not known whether any of these novel genes are functional.Expressed human class II genes usually occur as A/B gene pairs situated close to each other on the chromosome. This is also the case with Bota-DQ genes (Groenen et al. 1990) and Ovar-DQ genes (Deverson et al. 1991; Wright and Ballingall 1994). We used the techniques of cosmid cloning and DNA-mediated gene transfection to determine whether there is a sheep equivalent of the Bota-DYA gene, whether there is a DYB gene partner, and whether there is a protein product.A cosmid library was constructed from DNA prepared from a Finnish Landrace ram. The library was screened with Ovar-DQA, Ovar-DQB, HLA-DQA, and HLA-DQB gene probes at low stringency. A cosmid clone, 365, was obtained which hybridized weakly to both the Ovar gene probes. Restriction maps of the clone were produced for the enzymes Eco R1, Bam HI, Hin dIII, Sac I and Sma I. When the maps were compared to those published for the phage clones containing the Bota-DYA (van der Poel et al. 1990) and the Bota-DIB gene (Stone and Muggli-Cockett 1990), there was an imperfect match (Figure 1 shows the Eco RI maps). However, the sequence data for the A and B genes in cosmid 365 are more convincing. The sequences of exons 2 and 3 of the A gene in cosmid 365 and the Bota-DYA gene, together with the partial sequence from the third exon of the Cahi-DYA gene are shown in Figure 2 A. The predicted amino acid translations of these genes together with those of other published sheep MHC class II A genes are shown in Figure 2 B. The A gene in cosmid 365 had all the salient features of an MHC class II A gene. It showed a high sequence similarity to the cattle and caprine DYA genes and much less so to the Ovar-DRA gene (Ballingall et al. 1992; Acc. No z11600) and the Ovar-DQA1 and DQA2 (Scott et al. 1991 a; Acc. Nos. m33304 and m33305), as detailed in Table 1. The cosmid A gene showed low sequence similarity to the sheep DNA (formerly DZA) gene (unpublished observations). The A gene described here is clearly the sheep homologue of the Bota-DYA gene.The sequences of the second, third, and fourth exons of the B gene in cosmid 365 are shown in Figure 3 A together with those of the Bota-DIB gene (Stone and Muggli-Cockett 1990). Unfortunately, the presence of a Bam HI site in exon 2 of the sheep gene caused a truncation at this point, during the cloning procedure and so a part of exon 2, the whole of exon 1, and all the upstream regulatory elements were missing. The predicted amino acid translations of exons 2, 3, and 4 are shown together with those of an Ovar-DQB (Scott et al. 1991 a; Acc. No. m33323) and an expressed Ovar-DRB gene (Ballingall et al. 1992; Acc. No. z11522) in Figure 3 B.  相似文献   

11.
Summary A revised and enlarged genetic map of theAgrobacterium tumefaciens C58 chromosome has been produced with the help of plasmid R68.45. Apart from the location of several auxotrophic markers, the map also shows the position of two independent genes,ctu1 andctu2, which, when mutated, block the tumorigenesis of the bacterium. Of these two, onlyctu1 is complemented by the C58 chromosomalvir region cloned by Douglas et al. (1985). The same mutant was complemented by a chromosomal gene or genes located nearleu ofRhizobium meliloti and known to affect the nodulation properties of that bacterium. It has also been observed that C58 tryptophan auxotrophs invariably lose tumorigenicity. Prototrophic revertants and mutants supplied with extra tryptophan for about two weeks after infection produce normal tumours. These investigations suggest that for successful tumorigenesis a continuous supply of tryptophan is needed (to be converted into auxin IAA?) at least during the early stages.  相似文献   

12.
Some physicochemical properties and amino acid composition of the alkaline protease of B. amylosacchariticus were determined. The molecular weight and sedimentation coefficient were estimated to be 22,700 and 2.89 s, respectively, and the amino terminal amino acid was identified to be alanine. The enzyme contained 15.9% of nitrogen and was composed of 220 residues of amino acid: lys6, his5, arg3, asp20, thr14, ser37, glu12, pro10, gly25 ala27 val20, met3, isoleu12, leu12, tyr9, phe2, try3 and amide ammonia16 The results indicate that protein nature and chemical properties of the alkaline protease presented here are distinct from those of alkaline proteases obtained from the other strains of B. subtilis, such as subtilopeptidase A, B and BPN’  相似文献   

13.
A new bacterial gene (groPC) which affects lambda DNA replication.   总被引:33,自引:0,他引:33  
Summary A bacterial mutation affecting DNA replication, called groPC756, has been mapped between the thr and leu bacterial loci. Most of the parental DNA does not undergo even one round of replication in this host. Lambda mutants, called , which map in the P gene are able to overcome the inhibitory effect of the groPC756 mutation. It is shown that the mutation at the groPC locus also interferes with bacterial growth at 42°C. A -transducing phage, carrying the groPC+ allele, was isolated as a plaqueformer on groPC756 bacteria. Upon lysogenization, it restores both the gro + and temperature resistant phenotypes.  相似文献   

14.
Summary A mutant of the fungus Phycomyces blakesleeanus (Burgeff), C21 (madA7) that was isolated for its abnormal phototropism (Bergman et al. 1973) carries a secondary mutation pde-1 which is unlinked to the madA gene. The pde-1 allele causes the loss of about 80% of the cAMP phosphodiesterase activity. This allele is not essential for the photoreactions of the mycelium or the sporangiophore, and the bulk activity of the phosphodiesterase appears to play no role in the phototransduction pathway of Phycomyces.  相似文献   

15.
16.
The leuC gene, encoding 3-isopropylmalate dehydrogenase, the nprM gene (neutral protease) and a sporulation gene coding for a putative spoIV protein (spoIV) from Bacillus megaterium DSM319 were cloned and the nucleotide sequences were determined. The leuC gene is 1101 bp in length, preceded by a ribosome binding site; no promoter consensus sequence could be found. The nucleotide sequence from nprM when compared to the recently published gene from B. megaterium ATCC 14581 exhibited only a 17-base pair deviation. From a sporulation mutant isolated after transposonmutagenesis with transposon Tn917 the insertion site of the transposon was cloned and adjacent chromosomal fragments were characterized. An open reading frame that encodes for a putative spo protein of 247 amino-acid residues was identified.Sequence data presented in this contribution are part of doctoral theses of the Naturwissenschaftliche Fakultät Münster, Germany nprM (KDW); leuC and spoIV (MB)  相似文献   

17.
The prokaryotic endosymbionts (Buchnera) of aphids are known to provision their hosts with amino acids that are limiting in the aphid diet. Buchnera from the aphids Schizaphis graminum and Diuraphis noxia have plasmids containing leuABCD, genes that encode enzymes of the leucine biosynthetic pathway, as well as genes encoding proteins probably involved in plasmid replication (repA1 and repA2) and an open reading frame (ORF1) of unknown function. The newly reported plasmids closely resemble a plasmid previously described in Buchnera of the aphid Rhopalosiphum padi [Bracho AM, Martínez-Torres D, Moya A, Latorre A (1995) J Mol Evol 41:67–73]. Nucleotide sequence comparisons indicate conserved regions which may correspond to an origin of replication and two promoters, as well as inverted repeats, one of which resembles a rho-independent terminator. Phylogenetic analyses based on amino acid sequences of leu gene products and ORF1 resulted in trees identical to those obtained from endosymbiont chromosomal genes and the plasmid-borne trpEG. These results are consistent with a single evolutionary origin of the leuABCD-containing plasmid in a common ancestor of Aphididae and the lack of plasmid exchange between endosymbionts of different aphid species. Trees for ORF1 and repA (based on both nucleotides and amino acids) are used to examine the basis for leu plasmid differences between Buchnera of Thelaxes suberi and Aphididae. The most plausible explanation is that a single transfer of the leu genes to an ancestral replicon was followed by rearrangements. The related replicon in Buchnera of Pemphigidae, which lacks leuABCD, appears to represent the ancestral condition, implying that the plasmid location of the leu genes arose after the Pemphigidae diverged from other aphid families. This conclusion parallels previously published observations for the unrelated trpEG plasmid, which is present in Aphididae and absent in Pemphigidae. Recruitment of amino acid biosynthetic genes to plasmids has been ongoing in Buchnera lineages after the infection of aphid hosts. Received: 9 March 1998 / Accepted: 18 May 1998.  相似文献   

18.
19.
Direct assay for deoxyribonucleic acid polymerase II in extracts has been used to screen recombinants for the polB allele in Hfr × F crosses, F-ductants in episome transfer, and transductants in generalized transduction by phage P1. The polB gene is located at 2 min on the Escherichia coli linkage map; it is 39 to 64% co-transducible with leu. A mutant, E. coli polA1 polB100 polC (ts), deficient in deoxyribonucleic acid polymerases I and II and having a thermolabile deoxyribonucleic acid polymerase III, has been prepared by the P1-mediated cross: P1 (HMS85 polB100) × E. coli BT1026 polA1 polC (ts) leu.  相似文献   

20.
Summary A new transformation system for spheroplasts of Podospora anserina has been developed. The recipient leu1-1 strain is auxotrophic for leucine. The plasmid DNA does not carry the wild-type allele leu +.but a tRNA suppressor: su4-1 or su8-1. The following protocol for genetic analysis has been developed: the [leu +transformants are crossed with another mutant strain, carrying the 193 mutation. This mutation prevents the pigmentation of the spores and is also suppressed by the cloned suppressor. Thus, the genetic analysis of the transformants can be performed directly on ordered tetrads by the observation of pigmentation restoration. The first application of the method is described comparing the integration points when different suppressors are used. Integration of the plasmid DNA in the homologous site was not the rule; in most cases the integration point was located elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号