首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Breton J 《Biochemistry》2007,46(15):4459-4465
In the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides, two ubiquinone molecules, QA and QB, play a pivotal role in the conversion of light energy into chemical free energy by coupling electron transfer to proton uptake. In native RCs, the transfer of an electron from QA to QB takes place in the time range of 5-200 micros. On the basis of time-resolved FTIR step-scan measurements in native RCs, a new and unconventional mechanism has been proposed in which QB- formation precedes QA- oxidation [Remy, A., and Gerwert, K. (2003) Nat. Struct. Biol. 10, 637-644]. The IR signature of the proposed transient intermediary electron acceptor (denoted X) operating between QA and QB has been recently measured by the rapid-scan technique in the DN(L210) mutant RCs, in which the QA to QB electron transfer is slowed 8-fold compared to that in native RCs. This IR signature has been reported as a difference spectrum involving states X+, X, QA, and QA- [Hermes, S., et al. (2006) Biochemistry 45, 13741-13749]. Here, we report the steady-state FTIR difference spectra of the photoreduction of either QA or QB measured in both native and DN(L210) mutant RCs in the presence of potassium ferrocyanide. In these spectra, the CN stretching marker modes of ferrocyanide and ferricyanide allow the extent of the redox reactions to be quantitatively compared and are used for a precise normalization of the QA-/QA and QB-/QB difference spectra. The calculated QA- QB/QA QB- double-difference spectrum in DN(L210) mutant RCs is closely equivalent to the reported QA- X+/QA X spectrum in the rapid-scan measurement. We therefore conclude that species X+ and X are spectrally indistinguishable from QB and QB-, respectively. Further comparison of the QA- QB/QA QB- double-difference spectra in native and DN(L210) RCs also allows the possibility that QB- formation precedes QA- reoxidation to be ruled out for native RCs.  相似文献   

2.
Bacterial reaction centers (RCs) convert light energy into chemical free energy via the double reduction and protonation of the secondary quinone electron acceptor, QB, to the dihydroquinone QBH2. Two RC mutants (M266His --> Leu and M266His --> Ala) with a modified ligand of the non-heme iron have been studied by flash-induced absorbance change spectroscopy. No important changes were observed for the rate constants of the first and second electron transfers between the first quinone electron acceptor, QA, and QB. However, in the M266HL mutant a destabilization of approximately 40 meV of the free energy level of QA- was observed, at variance with the M266HA mutant. The superposition of the three-dimensional X-ray structures of the three proteins in the QA region provides no obvious explanation for the energy modification in the M266HL mutant. The shift of the midpoint redox potential of QA/QA- in M266HL caused accelerated recombination of the charges in the P+ QA- state of the RCs where the native QA was replaced by a low potential anthraquinone (AQA). As previously reported for the native RCs, in the M266HL we observed a biphasicity of the P+ AQA- --> P AQA charge recombination. Interestingly, both phases present a similar acceleration in the M266HL mutant with respect to the wild type. The pH dependencies of the proton uptake upon QA- and QB- formations are superimposable in both mutants but very different from those of native RCs. The data measured in mutants are similar to those that we previously obtained on strains modified at various sites of the cytoplasmic region. The similarity of the response to these different mutations is puzzling, and we propose that it arises from a collective behavior of multiple acidic residues resulting in strongly anticooperative proton binding. The unspecific disappearance of the high pH band of proton uptake observed in all these mutants appears as the natural consequence of removing any member of an interactive proton cluster. This long range interaction also accounts for the similar responses to mutations of the proton uptake pattern induced by either QA- or QB-. We surmise that the presence of an extended protonated water H-bond network providing protons to QB is responsible for these effects.  相似文献   

3.
R J Debus  G Feher  M Y Okamura 《Biochemistry》1986,25(8):2276-2287
Reaction centers (RCs) from the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26.1 were depleted of Fe by a simple procedure involving reversible dissociation of the H subunit. The resulting intact Fe-depleted RCs contained 0.1-0.2 Fe per RC as determined from atomic absorption and electron paramagnetic resonance (EPR) spectroscopy. Fe-depleted RCs that have no metal ion occupying the Fe site differed from native RCs in the following respects: (1) the rate of electron transfer from QA- to QB exhibited nonexponential kinetics with the majority of RCs having a rate constant slower by only a factor of approximately 2, (2) the efficiency of light-induced charge separation (DQA----D+QA-) produced by a saturating flash decreased to 63%, and (3) QA appeared readily reducible to QA2-. Various divalent metal ions were subsequently incorporated into the Fe site. The electron transfer characteristics of Fe-depleted RCs reconstituted with Fe2+, Mn2+, Co2+, Ni2+, Cu2+, and Zn2+ were essentially the same as those of native RCs. These results demonstrate that neither Fe2+ nor any divalent metal ion is required for rapid electron transfer from QA- to QB. However, the presence of a metal ion in the Fe site is necessary to establish the characteristic, native, electron-transfer properties of QA. The lack of a dominant role of Fe2+ or other divalent metals in the observed rate of electron transfer from QA- to QB suggests that a rate-limiting step (for example, a protonation event or a light-induced structural change) precedes electron transfer.  相似文献   

4.
Wakeham MC  Breton J  Nabedryk E  Jones MR 《Biochemistry》2004,43(16):4755-4763
In Rhodobacter sphaeroides reaction centers containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the A-branch of cofactors is prevented by the loss of the QA ubiquinone. Reaction centers that contain this AM260W mutation are proposed to photoaccumulate the P(+)QB- radical pair following transmembrane electron transfer along the B-branch of cofactors (Wakeham, M. C., Goodwin, M. G., McKibbin, C., and Jones, M. R. (2003) Photoaccumulation of the P(+)QB- radical pair state in purple bacterial reaction centers that lack the QA ubiquinone. FEBS Lett. 540, 234-240). The yield of the P(+)QB- state appears to depend upon which additional mutations are present. In the present paper, Fourier transform infrared (FTIR) difference spectroscopy was used to demonstrate that photooxidation of the reaction center's primary donor in QA-deficient reaction centers results in formation of a semiquinone at the QB site by B-branch electron transfer. Reduction of QB by the B-branch pathway still occurs at 100 K, with a yield of approximately 10% relative to that at room temperature, in contrast to the QA- to QB reaction in the wild-type reaction center, which is not active at cryogenic temperatures. These FTIR results suggest that the conformational changes that "gate" the QA- to QB reaction do not necessarily have the same influence on QB reduction when the electron donor is the HB anion, at least in a minority of reaction centers.  相似文献   

5.
The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.  相似文献   

6.
The functional replacement of the primary ubiquinone (QA) in the photosynthetic reaction center (RC) from Rhodobacter sphaeroides with synthetic vitamin K derivatives has provided a powerful tool to investigate the electron transfer mechanism. To investigate the binding mode of these quinones to the QA binding site we have determined the binding free energy and charge recombination rate from QA(-) to D+ (kAD) of 29 different 1,4-naphthoquinone derivatives with systematically altered structures. The most striking result was that none of the eight tested compounds carrying methyl groups in both positions 5 and 8 of the aromatic ring exhibited functional binding. To understand the binding properties of these quinones on a molecular level, the structures of the reaction center-naphthoquinone complexes were predicted with ligand docking calculations. All protein--ligand structures show hydrogen bonds between the carbonyl oxygens of the quinone and AlaM260 and HisM219 as found for the native ubiquinone-10 in the X-ray structure. The center-to-center distance between the naphthoquinones at QA and the native ubiquinone-10 at QB (the secondary electron acceptor) is essentially the same, compared to the native structure. A detailed analysis of the docking calculations reveals that 5,8-disubstitution prohibits binding due to steric clashes of the 5-methyl group with the backbone atoms of AlaM260 and AlaM249. The experimentally determined binding free energies were reproduced with an rmsd of approximately 4 kJ x mol(-1) in most cases providing a valuable tool for the design of new artificial electron acceptors and inhibitors.  相似文献   

7.
In the photosynthetic reaction centre (RC) from the purple bacterium Rhodobacter sphaeroides, the primary quinone, a ubiquinone-10 (Q(A)), has been substituted by anthraquinone. Three-dimensional crystals have been grown from the modified RC and its structure has been determined by X-ray crystallography to 2.4 A resolution. The bindings of the head-group from ubiquinone-10 and of the anthraquinone ring are very similar. In particular, both rings are parallel to each other and the hydrogen bonds connecting the native ubiquinone-10 molecule to AlaM260 and HisM219 are conserved in the anthraquinone containing RC. The space of the phytyl tail missing in the anthraquinone exchanged RC is occupied by the alkyl chain of a detergent molecule. Other structural changes of the Q(A)-binding site are within the limit of resolution. Our structural data bring strong credit to the very large amount of spectroscopic data previously achieved in anthraquinone-replaced RCs and which have participated in the determination of the energetics of the quinone system in bacterial RCs.  相似文献   

8.
The reaction center (RC) from Rhodobacter sphaeroides captures light energy by electron transfer between quinones QA and QB, involving a conformational gating step. In this work, conformational states of D+*QB-* were trapped (80 K) and studied using EPR spectroscopy in native and mutant RCs that lack QA in which QB was reduced by the bacteriopheophytin along the B-branch. In mutant RCs frozen in the dark, a light induced EPR signal due to D+*QB-* formed in 30% of the sample with low quantum yield (0.2%-20%) and decayed in 6 s. A small signal with similar characteristics was also observed in native RCs. In contrast, the EPR signal due to D+*QB-* in mutant RCs illuminated while freezing formed in approximately 95% of the sample did not decay (tau >107 s) at 80 K (also observed in the native RC). In all samples, the observed g-values were the same (g = 2.0026), indicating that all active QB-*'s were located in a proximal conformation coupled with the nonheme Fe2+. We propose that before electron transfer at 80 K, the majority (approximately 70%) of QB, structurally located in the distal site, was not stably reducible, whereas the minority (approximately 30%) of active configurations was in the proximal site. The large difference in the lifetimes of the unrelaxed and relaxed D+*QB-* states is attributed to the relaxation of protein residues and internal water molecules that stabilize D+*QB-*. These results demonstrate energetically significant conformational changes involved in stabilizing the D+*QB-* state. The unrelaxed and relaxed states can be considered to be the initial and final states along the reaction coordinate for conformationally gated electron transfer.  相似文献   

9.
Proton and electron transfer events in reaction centers (RCs) from Rhodobacter sphaeroides were investigated by site-directed mutagenesis of glutamic acid at position 212 and aspartic acid at 213 in the secondary quinone (QB) binding domain of the L subunit. These residues were mutated singly to the corresponding amides (mutants L212EQ and L213DN) and together to give the double mutant (L212EQ/L213DN). In the double mutant RCs, the rate of electron transfer from the primary (QA) to the secondary (QB) acceptor quinones is fast (tau approximately 300 microseconds) and is pH independent from pH 5 to 11. The rate of recombination between the oxidized primary donor, P+, and QB- is also pH independent and much slower (tau approximately 10 s) than in the wild type (Wt), indicating a significant stabilization of the QB- semiquinone. In the double mutant, and in L213DN mutant RCs at low pH, the P+QB- decay is suggested to occur significantly via a direct recombination rather than by repopulating the P+QA- state, as in the Wt. Comparison of the behavior of Wt and the three mutant RC types leads to the following conclusions: the pK of AspL213 in the Wt is approximately 4 for the QAQB state (pKQB) and approximately 5 for the QAQB-state (pKQB-); for GluL212, pKQB approximately 9.5 and pKQB- approximately 11. In L213DN mutant RCs, pKQB of GluL212 is less than or equal to 7, indicating that the high pK values of GluL212 in the Wt are due largely to electrostatic interaction with the ionized AspL213 which contributes a shift of at least 2.5 pH units. Transfer of the second electron and all associated proton uptake to form QBH2 is drastically inhibited in double mutant and L213DN mutant RCs. At pH greater than or equal to 8, the rates are at least 10(4)-fold slower than in Wt RCs. In L212EQ mutant RCs the second electron transfer and proton uptake are biphasic. The fast phase of the electron transfer is similar to that of the Wt, but the extent of rapid transfer is pH dependent, revealing the pH dependence of the equilibrium QA(-)QB- in equilibrium with QAQBH-. The estimated limits on the pK values--pKQA-QB-less than or equal to 7.3, pKQAQB2- greater than or equal to 10.4--are similar to those derived earlier for Wt RCs [Kleinfeld et al. (1985) Biochim. Biophys. Acta 809, 291-310] and may pertain to the quinone head group, per se.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The different roles of ubiquinone-10 (UQ10) at the primary and secondary quinone (QA and QB) binding sites of Rhodobacter sphaeroides R26 reaction centres are governed by the protein microenvironment. The 4C=O carbonyl group of QA is unusually strongly hydrogen-bonded, in contrast to QB. This asymmetric binding seems to determine their different functions. The asymmetric hydrogen-bonding at QA can be caused intrinsically by distortion of the methoxy groups or extrinsically by binding to specific amino-acid side groups. Different X-ray-based structural models show contradictory orientations of the methoxy groups and do not provide a clear picture. To elucidate if distortion of the methoxy groups induces this hydrogen-bonding, their (ring-)C-O vibrations were assigned by use of site-specifically labelled [5-13C]UQ10 and [6-13C]UQ10 reconstituted at either the QA or the QB binding site. Two infrared bands at 1288 cm(-1) and 1264 cm(-1) were assigned to the methoxy vibrations. They did not shift in frequency at either the QA or QB binding sites, as compared with unbound UQ10. As the frequencies of these vibrations and their coupling are sensitive to the conformations of the methoxy groups, different conformations of the C(5) and C(6) methoxy groups at the QA and QB binding sites can now be excluded. Both methoxy groups are oriented out of plane at QA and QB. Therefore, hydrogen-bonding to His M219 combined with electrostatic interactions with the Fe2+ ion seems to determine the strong asymmetric binding of QA.  相似文献   

11.
The kinetics of light-induced electron transfer in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides were studied in the presence of the detergent lauryldimethylamine-N-oxide (LDAO). After the light-induced electron transfer from the primary donor (P) to the acceptor quinone complex, the dark re-reduction of P+ reflects recombination from the reduced acceptor quinones, QA- or QB-. The secondary quinone, QB, which is loosely bound to the RC, determines the rate of this process. Electron transfer to QB slows down the return of the electron to P+, giving rise to a slow phase of the recovery kinetics with time tau P approximately 1 s, whereas charge recombination in RCs lacking QB generates a fast phase with time tau AP approximately 0.1 s. The amount of quinone bound to RC micelles can be reduced by increasing the detergent concentration. The characteristic time of the slow component of P+ dark relaxation, observed at low quinone content per RC micelle (at high detergent concentration), is about 1.2-1.5 s, in sharp contrast to expectations from previous models, according to which the time of the slow component should approach the time of the fast component (about 0.1 s) when the quinone concentration approaches zero. To account for this large discrepancy, a new quantitative approach has been developed to analyze the kinetics of electron transfer in isolated RCs with the following key features: 1) The exchange of quinone between different micelles (RC and detergent micelles) occurs more slowly than electron transfer from QB- to P+; 2) The exchange of quinone between the detergent "phase" and the QB binding site within the same RC micelle is much faster than electron transfer between QA- and P+; 3) The time of the slow component of P+ dark relaxation is determined by (n) > or = 1, the average number of quinones in RC micelles, calculated only for those RC micelles that have at least one quinone per RC (in excess of QA). An analytical function is derived that relates the time of the slow component of P+ relaxation, tau P, and the relative amplitude of the slow phase. This provides a useful means of determining the true equilibrium constant of electron transfer between QA and QB (LAB), and the association equilibrium constant of quinone binding at the QB site (KQ+). We found that LAB = 22 +/- 3 and KQ = 0.6 +/- 0.2 at pH 7.5. The analysis shows that saturation of the QB binding site in detergent-solubilized RCs is difficult to achieve with hydrophobic quinones. This has important implications for the interpretation of apparent dependencies of QB function on environmental parameters (e.g. pH) and on mutational alterations. The model accounts for the effects of detergent and quinone concentration on electron transfer in the acceptor quinone complex, and the conclusions are of general significance for the study of quinone-binding membrane proteins in detergent solutions.  相似文献   

12.
Using site-directed mutagenesis, we obtained the mutant of the purple bacterium Rhodobacter sphaeroides with Ile to His substitution at position 177 in the L-subunit of the photosynthetic reaction center (RC). The mutant strain forms stable and photochemically active RC complexes. Relative to the wild type RCs, the spectral and photochemical properties of the mutant RC differ significantly in the absorption regions corresponding to the primary donor P and the monomer bacteriochlorophyll (BChl) absorption. It is shown that the RC I(L177)H contains only three BChl molecules compared to four BChl molecules in the wild type RC. Considering the fact that the properties of both isolated and membrane-associated mutant RCs are similar, we conclude that the loss of a BChl molecule from the mutant RC is caused by the introduced mutation but not by the protein purification procedure. The new mutant missing one BChl molecule but still able to perform light-induced reactions forming the charge-separated state P+QA- appears to be an interesting object to study the mechanisms of the first steps of the primary electron transfer in photosynthesis.  相似文献   

13.
Wells TA  Takahashi E  Wraight CA 《Biochemistry》2003,42(14):4064-4074
In the primary quinone (Q(A)) binding site of Rb. sphaeroides reaction centers (RCs), isoleucine M265 is in extensive van der Waals contact with the ubiquinone headgroup. Substitution of threonine or serine for this residue (mutants M265IT and M265IS), but not valine (mutant M265IV), lowers the redox midpoint potential of Q(A) by about 100 mV (Takahashi et al. (2001) Biochemistry 40, 1020-1028). The unexpectedly large effect of the polar substitutions is not due to reorientation of the methoxy groups as similar redox potential changes are seen for these mutants with either ubiquinone or anthraquinone as Q(A). Using FTIR spectroscopy to compare Q(A)(-)/Q(A) IR difference spectra for wild type and the M265 mutant RCs, we found changes in the polar mutants (M265IT and M265IS) in the quinone C[double bond]O and C[double bond]C stretching region (1600-1660 cm(-1)) and in the semiquinone anion band (1440-1490 cm(-1)), as well as in protein modes. Modeling the mutations into the X-ray structure of the wild-type RC indicates that the hydroxyl group of the mutant polar residues, Thr and Ser, is hydrogen bonded to the peptide C[double bond]O of Thr(M261). It is suggested that the mutational effect is exerted through the extended backbone region that includes Ala(M260), the hydrogen bonding partner to the C1 carbonyl of the quinone headgroup. The resulting structural perturbations are likely to include lengthening of the hydrogen bond between the quinone C1[double bond]O and the peptide NH of Ala(M260). Possible origins of the IR spectroscopic and redox potential effects are discussed.  相似文献   

14.
Photosystem II of oxygen-evolving organisms exhibits a bicarbonate-reversible formate effect on electron transfer between the primary and secondary acceptor quinones, QA and QB. This effect is absent in the otherwise similar electron acceptor complex of purple bacteria, e.g., Rhodobacter sphaeroides. This distinction has led to the suggestion that the iron atom of the acceptor quinone complex in PS II might lack the fifth and sixth ligands provided in the bacterial reaction center (RC) by a glutamate residue at position 234 of the M-subunit in Rb. sphaeroides RCs (M232 in Rps. viridis). By site-directed mutagenesis we have altered GluM234 in RCs from Rb. sphaeroides, replacing it with valine, glutamine and glycine to form mutants M234EV, M234EQ and M234EG, respectively. These mutants grew competently under phototrophic conditions and were tested for the formate-bicarbonate effect. In chromatophores there were no detectable differences between wild type (Wt) and mutant M234EV with respect to cytochrome b-561 reduction following a flash, and no effect of bicarbonate depletion (by incubation with formate). In isolated RCs, several electron transfer activities were essentially unchanged in Wt and M234EV, M234EQ and M234EG mutants, and no formate-bicarbonate effect was observed on: (a) the fast or slow phases of recovery of the oxidized primary donor (P+) in the absence of exogenous donor, i.e., the recombination of P+Q-A or P+Q-B, respectively; (b) the kinetics of electron transfer from Q-A to QB; or (c) the flash dependent oscillations of semiquinone formation in the presence of donor to P+ (QB turnover). The absence of a formate-bicarbonate effect in these mutants suggests that GluM234 is not responsible for the absence of the formate-bicarbonate effect in Wt bacterial RCs, or at least that other factors must be taken into account. The mutant RCs were also examined for the fast primary electron transfer along the active (A-)branch of the pigment chain, leading to reduction of QA. The kinetics were resolved to reveal the reduction of the monomer bacteriochlorophyll (tau = 3.5 ps), followed by reduction of the bacteriopheophytin (tau = 0.9 ps). Both steps were essentially unaltered from the wild type. However, the rate of reduction of QA was slowed by a factor of 2 (tau = 410 +/- 30 and 47 +/- 30 ps for M234EQ and M234EV, respectively, compared to 220 ps in the wild type).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The geometry of the hydrogen bonds to the two carbonyl oxygens of the semiquinone Q(A)(. -) in the reaction center (RC) from the photosynthetic purple bacterium Rhodobacter sphaeroides R-26 were determined by fitting a spin Hamiltonian to the data derived from (1)H and (2)H ENDOR spectroscopies at 35 GHz and 80 K. The experiments were performed on RCs in which the native Fe(2+) (high spin) was replaced by diamagnetic Zn(2+) to prevent spectral line broadening of the Q(A)(. -) due to magnetic coupling with the iron. The principal components of the hyperfine coupling and nuclear quadrupolar coupling tensors of the hydrogen-bonded protons (deuterons) and their principal directions with respect to the quinone axes were obtained by spectral simulations of ENDOR spectra at different magnetic fields on frozen solutions of deuterated Q(A)(. -) in H(2)O buffer and protonated Q(A)(. -) in D(2)O buffer. Hydrogen-bond lengths were obtained from the nuclear quadrupolar couplings. The two hydrogen bonds were found to be nonequivalent, having different directions and different bond lengths. The H-bond lengths r(OH) are 1.73 +/- 0.03 Angstrom and 1.60 +/- 0.04 Angstrom, from the carbonyl oxygens O(1) and O(4) to the NH group of Ala M260 and the imidazole nitrogen N(delta) of His M219, respectively. The asymmetric hydrogen bonds of Q(A)(. -) affect the spin density distribution in the quinone radical and its electronic structure. It is proposed that the H-bonds play an important role in defining the physical properties of the primary quinone, which affect the electron transfer processes in the RC.  相似文献   

16.
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.  相似文献   

17.
Site-specific mutations in the quinone binding sites of the photosynthetic reaction center (RC) protein complexes of Rhodobacter (R.) capsulatus caused pronounced effects on sequential electron transfer. Conserved residues that break the twofold symmetry in this region of the RC – M246Ala and M247Ala in the QA binding pocket, and L212Glu and L213Asp in the QB binding pocket – were targeted. We constructed a QB-site mutant, L212Glu-L213Asp Ala-Ala, and a QA-site mutant, M246Ala–M247Ala Glu-Asp, to partially balance the differences in charge distribution normally found between the two quinone binding sites. In addition, two photocompetent revertants were isolated from the photosynthetically-incompetent M246Glu-M247Asp mutant: M246Ala–M247Asp and M246Gly–M247Asp. Sequential electron transfer was investigated by continuous light excitation and time-resolved electron paramagnetic resonance (EPR), and time-resolved optical techniques. Several lines of EPR evidence suggested that the forward electron transfer rate to QA, kQ, was slowed in those strains containing altered QA sites. The slower rates of secondary electron transfer were confirmed by time-resolved optical results with the M246Glu-M247Asp mutations in the QA site resulting in a dramatically lowered secondary electron transfer efficiency [kQ < (2 ns)-1] in comparison with either the native R. capsulatus RC or the QB site mutant [kQ (200 ps)-1]. Secondary electron transfer in the two revertants was intermediate between that of the native RC and the QA mutant. The P+ QA- PQA charge recombination rates were also changed in the strains that carried altered QA sites. We show that local mutations in the QA site, presumably through local electrostatic changes, significantly alter binding and electron transfer properties of QA.  相似文献   

18.
W Leibl  J Breton 《Biochemistry》1991,30(40):9634-9642
The kinetics of electron transfer from the primary (QA) to the secondary (QB) quinone acceptor in whole cells and chromatophores of Rhodopseudomonas viridis was studied as a function of the redox state of QB and of pH by using a photovoltage technique. Under conditions where QB was oxidized, the reoxidation of QA- was found to be essentially monophasic and independent of pH with a half-time of about 20 microseconds. When QB was reduced to the semiquinone form by a preflash, the reoxidation of QA- was slowed down showing a half-time between 40 and 80 microseconds at pH less than or equal to 9. Above pH 9, the rate of the second electron transfer decreased nearly one order of magnitude per pH unit. After a further preflash, the fast and pH-independent kinetics of QA- reoxidation was essentially restored. The concentration of QA still reduced 100 microseconds after its complete reduction by a flash showed distinct binary oscillations as a function of the number of preflashes, confirming the interpretation that the electron-transfer rate depends on the redox state of QB. After addition of o-phenanthroline, the reoxidation of QA- is slowed down to the time range of seconds as expected for a back-reaction with oxidized cytochrome. Under conditions where inhibitors of the electron transfer between the quinones fail to block this reaction in a fraction of the reaction centers due to the presence of the extremely stable and strongly bound semiquinone, QB-, these reaction centers show a slow electron transfer on the first flash and a fast one on the second, i.e., an out-of-phase oscillation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Numerical calculations of the free energy of the first electron transfer in genetically modified reaction centers from Rhodobacter (Rb.) sphaeroides and Rb. capsulatus were carried out from pH 5 to 11. The multiconformation continuum electrostatics (MCCE) method allows side chain, ligand, and water reorientation to be embedded in the calculations of the Boltzmann distribution of cofactor and amino acid ionization states. The mutation sites whose effects have been modeled are L212 and L213 (the L polypeptide) and two in the M polypeptide, M43(44) and M231(233) in Rb. capsulatus (Rb. sphaeroides). The results of the calculations were compared to the experimental data, and very good agreement was found especially at neutral pH. Each mutation removes or introduces ionizable residues, but the protein maintains a net charge close to that in native RCs through ionization changes in nearby residues. This reduces the effect of mutation and makes the changes in state free energy smaller than would be found in a rigid protein. The state energy of QA-QB and QAQB- states have contributions from interactions among the residues as well as with the quinone which is ionized. For example, removing L213Asp, located in the QB pocket, predominantly changes the free energy of the QA-QB state, where the Asp is ionized in native RCs rather than the QAQB- state, where it is neutral. Side chain, hydroxyl, and water rearrangements due to each of the mutations have also been calculated showing water occupancy changes during the QA- to QB electron transfer.  相似文献   

20.
We report electron paramagnetic resonance (EPR) experiments in frozen solutions of unreduced and reduced photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides R-26 in which Fe2+ has been chemically replaced by the isotope 65Cu2+. Samples in which the primary quinone acceptor QA is unreduced (Cu2+QA:RCs) give a powder EPR spectrum typical for Cu2+ having axial symmetry, corresponding to a d(x2 - y2) ground state orbital, with g values g parallel = 2.314 +/- 0.001 and g perpendicular = 2.060 +/- 0.003. The spectrum shows a hyperfine structure for the nuclear spin of copper (65I = 3/2) with A parallel = (-167 +/- 1) x 10(-4) cm-1 and /A perpendicular/ = (16 +/- 2) x 10(-4) cm-1, and hyperfine couplings with three nitrogen ligands. This has been verified in samples containing the naturally occurring 14N isotope (l = 1), and in samples where the nitrogen ligands to copper were replaced by the isotope 15N (l = 1/2). We introduce a model for the electronic structure at the position of the metal ion which reflects the recently determined three-dimensional structure of the RCs of Rb. sphaeroides (Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1987. Proc. Natl. Acad. Sci. USA. 84:5730: Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1988. Proc. Natl. Acad. Sci. USA, 85:8487) as well as our EPR results. In this model the copper ion is octahedrally coordinated to three nitrogens from histidine residues and to one carboxylate oxygen from a glutamic acid, forming a distorted square in the plane of the d(x2 = y2) ground state orbital. It is also bound to a nitrogen of another histidine and to the other carboxylate oxygen of the same glutamic acid residue, in a direction approximately normal to this plane. The EPR spectrum changes drastically when the quinone acceptor QA is chemically reduced (Cu2+QA-:RCs); the change is due to the exchange and dipole-dipole interactions between the Cu2+ and QA- spins. A model spin Hamiltonian proposed for this exchange coupled cooper-quinone spin dimer accounts well for the observed spectra. From a comparison of the EPR spectra of the Cu2+QA:RC and CU2+QA-:RC complexes we obtain the values /J0/ = (0.30 +/- 0.02) K for the isotropic exchange coupling, and /d/ = (0.010 +/- 0.002) K for the projection of the dipole-dipole interaction tensor on the symmetry axis of the copper spin. From the EPR experiments only the relative signs of J0 and d can be deduced; it was determined that they have the same sign. The magnitude of the exchange coupling calculated for Cu2+QA-:RC is similar to that observed for the Fe2+QA-:RC complex (J0 = -0.43K). The exchange coupling is discussed in terms of the superexchange paths connecting the Cu2+ ion and the quinone radical using the structural data for the RCs of Rb. sphaeroides. From the value of the dipole-dipole interaction, d, we determined R approximately 8.4 A for the weighted distance between the metal ion and the quinone in reduced RCs, which is to be compared with 10 A obtained from x-ray analysis of unreduced RCs. This points to a shortening of the Cu2+ -QA- distance upon reduction of the quinone, as has been proposed by Allen et al. (1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号