首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P2X7 receptor (P2X7R) is an ATP-gated ion channel highly expressed in microglia. P2X7R plays important roles in inflammatory responses in the brain. However, little is known about the mechanisms regulating its functions in microglia. Lysophosphatidylcholine (LPC), an inflammatory phospholipid that promotes microglial activation, may have some relevance to P2X7R signaling in terms of microglial function. In this study, we examined its effects on P2X7R signaling in a mouse microglial cell line (MG6) and primary microglia. LPC facilitated the sustained increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) through P2X7R channels activated by ATP or BzATP. The potentiated increase in [Ca(2+)](i) was actually inhibited by P2X7R antagonists, brilliant blue G and oxidized ATP. The potentiating effect of LPC was not observed with P2Y receptor systems, which are also expressed in MG6 cells. G2A, a receptor for LPC, was expressed in MG6 cells, but not involved in the facilitating effect of LPC on the P2X7R-mediated change in [Ca(2+)](i). Furthermore, LPC enhanced the P2X7R-associated formation of membrane pores and the activation of p44/42 mitogen-activated protein kinase. These results suggest that LPC may regulate microglial functions in the brain by enhancing the sensitivity of P2X7R.  相似文献   

2.
Establishment of an assay for P2X7 receptor-mediated cell death   总被引:1,自引:0,他引:1  
The P2X7 receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human P2X7 receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of hP2X7 receptor. Functional activity of the hP2X7 receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the hP2X7-expressing HEK 293 cells and this cell death could be quantified. Two known P2X7 antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of hP2X7 receptors.  相似文献   

3.
Antagonists for the P2 receptor subtype P2X4, an ATP-activated cation channel receptor, have potential as novel drugs for the treatment of neuropathic pain and other inflammatory diseases. In the present study, a series of 47 carbamazepine derivatives including 32 novel compounds were designed, synthesized, and evaluated as P2X4 receptor antagonists. Their potency to inhibit ATP-induced calcium influx in 1321N1 astrocytoma cells stably transfected with the human P2X4 receptor was determined. Additionally, species selectivity (human, rat, mouse) and receptor subtype selectivity (P2X4 vs P2X1, 2, 3, 7) were investigated for selected derivatives. The most potent compound of the present series, which exhibited an allosteric mechanism of P2X4 inhibition, was N,N-diisopropyl-5H-dibenz[b,f]azepine-5-carboxamide (34, IC50 of 3.44 μM). The present study extends the so far very limited knowledge on structure–activity relationships of P2X4 receptor antagonists.  相似文献   

4.
Multinucleated giant cells (MGC), a hallmark of chronic inflammatory reactions, remain an enigma of cell biology. There is evidence implicating the purinergic P2X7 receptor in the fusion process leading to MGC. To investigate this, we used HEK 293 cells stably transfected with either 1) the full-length rat P2X7 receptor (P2X7 cells), 2) a rat P2X7 receptor lacking the C-terminal domain (P2X7TC), or 3) a mock vector, and rat alveolar macrophages (MA) expressing the native receptor. P2X7 cells cultured in serum-free medium formed increased numbers of MGC and displayed a higher fusion index compared with mock transfectants. Stimulation of P2X7 pore-forming activity in P2X7 cells by polymyxin B (PMB) further increased significantly the formation of MGC. Conversely, blockers of P2X-receptors including oxidized ATP, brilliant blue G, and pyridoxal phosphate-6-azophenyl-2'-4'-disulfonic acid inhibited significantly MGC formation in both unstimulated and PMB-stimulated P2X7-transfected cells. In contrast, cells transfected with the truncated P2X7TC were devoid of pore-forming activity, did not respond to PMB stimulation, and failed to form enhanced numbers of MGC, thus behaving as mock transfectants. As found for P2X7-transfected cells, PMB also potentiated dose-dependently the formation of multinucleated MA by rat alveolar MA. Pretreatment with oxidized ATP abrogated the PMB stimulatory effects. Together, these data demonstrate unequivocally the participation of P2X7 receptor in the process of MGC formation. Our study also provides evidence suggesting that stimulation of the P2X7 receptor pathway in MA may mediate increased formation of MGC during chronic inflammatory reactions.  相似文献   

5.
Microglia, glial cells with an immunocompetent role in the CNS, react to stimuli from the surrounding environment with alterations of their phenotypic response. Amongst other activating signals, the endotoxin lipopolysaccharide (LPS) is widely used as a tool to mimic bacterial infection in the CNS. LPS-activated microglia undergo dramatic changes in cell morphology/activity; in particular, they stop proliferating and differentiate from resting to effector cells. Activated microglia also show modifications of purinoreceptor signalling with a significant decrease in P2X(7) expression. In this study, we demonstrate that the down-regulation of the P2X(7) receptor in activated microglia may play an important role in the antiproliferative effect of LPS. Indeed, chronic blockade of the P2X(7) receptor by antagonists (oxidized ATP, KN62 and Brilliant Blue G), or treatment with the ATP-hydrolase apyrase, severely decreases microglial proliferation, down-regulation of P2X(7) receptor expression by small RNA interference (siRNA) decreases cell proliferation, and the proliferation of P2X(7)-deficient N9 clones and primary microglia, in which P2X(7) expression is down-regulated by siRNA, is unaffected by either LPS or P2X(7) antagonists. Furthermore, flow cytometric analysis indicates that exposure to oxidized ATP or treatment with LPS reversibly decreases cell cycle progression, without increasing the percentage of apoptotic cells. Overall, our data show that the P2X(7) receptor plays an important role in controlling microglial proliferation by supporting cell cycle progression.  相似文献   

6.
Activation of the P2X7 receptor of macrophages plays an important role in inflammation. We recently reported that co-expression of P2X4 receptor with P2X7 receptor facilitates P2X7 receptor-mediated cell death via Ca(2+) influx. However, it remained unclear whether P2X4 receptor is involved in P2X7 receptor-mediated inflammatory responses, such as cytokine production. Here, we present evidence that P2X4 receptor modulates P2X7 receptor-dependent inflammatory functions. Treatment of mouse macrophage RAW264.7 cells with 1mM ATP induced high mobility group box 1 (HMGB1) release and IL-1β production via activation of P2X7 receptor. Knockdown of P2X4 receptor or removal of extracellular Ca(2+) suppressed ATP-induced release of both HMGB1 and IL-1β. On the other hand, knockdown of P2X4 receptor or removal of extracellular Ca(2+) enhanced P2X7-dependent LC3-II expression (an index of autophagy), suggesting that P2X4 receptor suppresses P2X7-mediated autophagy. Since LC3-II expression was inhibited by pretreatment with antioxidant and NADPH oxidase inhibitor, we examined P2X7-mediated production of reactive oxygen species (ROS). We found that activation of P2X7 receptor-mediated production of ROS was significantly facilitated in P2X4-knockdown cells, suggesting that co-expression of P2X4 receptor with P2X7 receptor may suppress anti-inflammatory function-related autophagy via suppression of ROS production. We conclude that co-expression of P2X4 receptor with P2X7 receptor enhances P2X7-mediated inflammation through both facilitation of release of cytokines and suppression of autophagy.  相似文献   

7.
不同诱导因子对人外周血单个核细胞P2X7受体表达的作用   总被引:4,自引:0,他引:4  
Zhang XJ  Zheng GG  Ma XT  Lin YM  Song YH  Wu KF 《生理学报》2005,57(2):193-198
ATP激活P2X7受体可产生一系列的白细胞功能反应,因此P2X7受体的表达调控引起我们的兴趣。然而P2X7受体在正常人外周血单个核细胞(peripheral blood mononuclear cells,PBMC)、单核细胞中的表达调控机制尚未阐明。本文用半定量RT-PCR方法检测多种细胞因子、细菌抗原、丝裂原对P2X7受体表达的诱导作用,探索P2X7受体的诱导表达模式。结果表明,单个核细胞和单核细胞可检出P2X7受体的表达;白细胞介素2、4、6(interleukin-2、-4、-6,IL-2、IL-4、IL-6)、肿瘤坏死因子仪(tumour necrosis factor-α,TNF-α)等细胞因子和金黄色葡萄球菌CowanⅠ株(Staphylococcus aureus Cowan strainⅠ,SAC)、脂多糖(lipopolysaccharide,LPS)能上调PBMC的P2X7受体表达,而γ干扰素(interferon-γ,IFN-γ)、粒-巨噬细胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)、巨噬细胞集落刺激因子(macmphage colony-stimulating factor,M-CSF)和植物血凝素(phytohemagglutinin-M,PHA-M)等则没有作用;LPS和M-CSF可以提高单核细胞的P2X7受体表达,IFN-γ、TNF-α、GM-CSF作用较弱,但是这些因子的预处理并不能增强LPS对P2X7受体表达的诱导。炎症因子促进P2X7受体的表达,提示P2X7受体可能在对抗细菌感染的免疫反应中起一定作用,这有待于进一步研究。  相似文献   

8.
Seven P2X ion channel nucleotide receptor subtypes have been cloned and characterised. P2X7 receptors (P2X7R) are unusual in that there are extra amino acids in the intracellular C terminus. Low concentrations of ATP open cation channels sometimes leading to cell proliferation, whereas high concentrations of ATP open large pores that release inflammatory cytokines and can lead to apoptotic cell death. Since many diseases involve inflammation and immune responses, and the P2X7R regulates inflammation, there has been recent interest in the pathophysiological roles of P2X7R and the potential of P2X7R antagonists to treat a variety of diseases. These include neurodegenerative diseases, psychiatric disorders, epilepsy and a number of diseases of peripheral organs, including the cardiovascular, airways, kidney, liver, bladder, skin and musculoskeletal. The potential of P2X7R drugs to treat tumour progression is discussed.  相似文献   

9.
10.
A cDNA was cloned which encodes a new ATP-gated ion channel (P2X4 receptor). ATP induces a cationic current in HEK293 cells transfected with the P2X4 receptor. However, the current is almost completely insensitive to antagonists effective at other P2X receptors. Sensitivity to two of these antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and pyridoxal 5-phosphate) is restored by replacement of Glu249 by lysine, which occurs at the equivalent position in P2X1 and P2X2 receptors. P2X4 RNA is found by in situ hybridization in the brain, peripheral ganglia and epithelia including serosal cells of salivary glands. Recordings from rat submandibular gland cells showed ATP-induced currents that are also insensitive to antagonists. These results define a further member of P2X receptor family, and they identify an amino acid residue involved in antagonist binding. They also introduce a new phenotype for ATP responses at P2X receptors--insensitivity to currently known antagonists.  相似文献   

11.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

12.
Extracellular nucleotides, such as ATP, are released from cells and play roles in various physiological and pathological processes through activation of P2 receptors. Here, we show that autocrine signaling through release of ATP and activation of P2X7 receptor influences migration of human lung cancer cells. Release of ATP was induced by stimulation with TGF-β1, which is a potent inducer of cell migration, in human lung cancer H292 cells, but not in noncancerous BEAS-2B cells. Treatment of H292 cells with a specific antagonist of P2X7 receptor resulted in suppression of TGF-β1-induced migration. PC-9 human lung cancer cells released a large amount of ATP under standard cell culture conditions, and P2X7 receptor-dependent dye uptake was observed even in the absence of exogenous ligand, suggesting constitutive activation of P2X7 receptor in this cell line. PC-9 cells showed high motile activity, which was inhibited by treatment with ecto-nucleotidase and P2X7 receptor antagonists, whereas a P2X7 receptor agonist enhanced migration. PC-9 cells also harbor a constitutively active mutation in epidermal growth factor receptor (EGFR). Treatment with EGFR tyrosine kinase inhibitor AG1478 suppressed both cell migration and P2X7 receptor expression in PC-9 cells. Compared to control PC-9 cells, cells treated with P2X7 antagonist exhibited broadened lamellipodia around the cell periphery, while AG1478-treated cells lacked lamellipodia. These results indicate that P2X7-mediated signaling and EGFR signaling may regulate migration of PC-9 cells through distinct mechanisms. We propose that autocrine ATP-P2X7 signaling is involved in migration of human lung cancer cells through regulation of actin cytoskeleton rearrangement.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9411-x) contains supplementary material, which is available to authorized users.  相似文献   

13.
While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms.  相似文献   

14.

Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.

  相似文献   

15.
Enhanced sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful are hallmark sensory perturbations associated with chronic pain. It is now appreciated that ATP, through its actions as an excitatory neurotransmitter, plays a prominent role in the initiation and maintenance of chronic pain states. Mechanistically, the ability of ATP to drive nociceptive sensitivity is mediated through direct interactions at neuronal P2X3 and P2X2/3 receptors. Extracellular ATP also activates P2X4, P2X7, and several P2Y receptors on glial cells within the spinal cord, which leads to a heightened state of neural-glial cell interaction in ongoing pain states. Following the molecular identification of the P2 receptor superfamilies, selective small molecule antagonists for several P2 receptor subtypes were identified, which have been useful for investigating the role of specific P2X receptors in preclinical chronic pain models. More recently, several P2X receptor antagonists have advanced into clinical trials for inflammation and pain. The development of orally bioavailable blockers for ion channels, including the P2X receptors, has been traditionally difficult due to the necessity of combining requirements for target potency and selectivity with suitable absorption distribution, metabolism, and elimination properties. Recent studies on the physicochemical properties of marketed orally bioavailable drugs, have identified several parameters that appear critical for increasing the probability of achieving suitable bioavailability, central nervous system exposure, and acceptable safety necessary for clinical efficacy. This review provides an overview of the antinociceptive pharmacology of P2X receptor antagonists and the chemical diversity and drug-like properties for emerging antagonists of P2X3, P2X2/3, P2X4, and P2X7 receptors.  相似文献   

16.
Extracellular ATP regulates various cellular functions by engaging multiple subtypes of P2 purinergic receptors. In many cell types, the ionotropic P2X7 receptor mediates pathological events such as inflammation and cell death. However, the importance of this receptor in chondrocytes remains largely unexplored. Here, we report the functional identification of P2X7 receptor in articular chondrocytes and investigate the involvement of P2X7 receptors in ATP-induced cytotoxicity. Chondrocytes were isolated from rabbit articular cartilage, and P2X7 receptor currents were examined using the whole-cell patch-clamp technique. ATP-induced cytotoxicity was evaluated by measuring caspase-3/7 activity, lactate dehydrogenase (LDH) leakage, and prostagrandin E2 (PGE2) release using microscopic and fluorimetric/colorimetric evaluation. Extracellular ATP readily evoked a cationic current without obvious desensitization. This ATP-activated current was dose related, but required millimolar concentrations. A more potent P2X7 receptor agonist, BzATP, also activated this current but at 100-fold lower concentrations. ATP-induced currents were largely abolished by selective P2X7 antagonists, suggesting a predominant role for the P2X7 receptor. RT-PCR confirmed the presence of P2X7 in chondrocytes. Heterologous expression of a rabbit P2X7 clone successfully reproduced the ATP-induced current. Exposure of chondrocytes to ATP increased caspase-3/7 activities, an effect that was totally abrogated by P2X7 receptor antagonists. Extracellular ATP also enhanced LDH release, which was partially attenuated by the P2X7 inhibitor. The P2X7 receptor-mediated elevation in apoptotic caspase signaling was accompanied by increased PGE2 release and was attenuated by inhibition of either phospholipase A2 or cyclooxygenase-2. This study provides direct evidence for the presence of functional P2X7 receptors in articular chondrocytes. Our results suggest that the P2X7 receptor is a potential therapeutic target in chondrocyte death associated with cartilage injury and disorders including osteoarthritis.  相似文献   

17.
Duchenne muscular dystrophy (DMD) is a lethal inherited muscle disorder. Pathological characteristics of DMD skeletal muscles include, among others, abnormal Ca(2+) homeostasis and cell signalling. Here, in the mdx mouse model of DMD, we demonstrate significant P2X7 receptor abnormalities in isolated primary muscle cells and cell lines and in dystrophic muscles in vivo. P2X7 mRNA expression in dystrophic muscles was significantly up-regulated but without alterations of specific splice variant patterns. P2X7 protein was also up-regulated and this was associated with altered function of P2X7 receptors producing increased responsiveness of cytoplasmic Ca(2+) and extracellular signal-regulated kinase (ERK) phosphorylation to purinergic stimulation and altered sensitivity to NAD. Ca(2+) influx and ERK signalling were stimulated by ATP and BzATP, inhibited by specific P2X7 antagonists and insensitive to ivermectin, confirming P2X7 receptor involvement. Despite the presence of pannexin-1, prolonged P2X7 activation did not trigger cell permeabilization to propidium iodide or Lucifer yellow. In dystrophic mice, in vivo treatment with the P2X7 antagonist Coomassie Brilliant Blue reduced the number of degeneration-regeneration cycles in mdx skeletal muscles. Altered P2X7 expression and function is thus an important feature in dystrophic mdx muscle and treatments aiming to inhibit P2X7 receptor might slow the progression of this disease.  相似文献   

18.
The survival and death rates of inflammatory cells directly control their number and are substantially associated with the degree of inflammation. Microglia, key players in neuroinflammation, often cause excessive reactions implicated in neurological diseases. However, the mechanisms that determine microglial fate under pathological conditions remain to be elucidated. Here, we report that activation by lipopolysaccharide (LPS, a Toll-like receptor 4 ligand), an inflammation inducer, primarily promotes survival of microglia, but as its concentration is increased it induces cell death, resulting in decreased cell number. Moreover, extracellular ATP, which is released upon tissue damage, further enhanced the survival induced by a low LPS concentration and the death induced by a high LPS concentration. The survival-promoting effect of ATP was mimicked by non-hydrolyzable ATP analog, adenosine 5'-O-(3-thiotriphosphate), and also by the P2X(7) receptor agonist, 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, and was suppressed by the P2X(7) antagonists, Brilliant Blue G and A 438079. On the contrary, the death of LPS-activated microglia was not affected by adenosine 5'-O-(3-thiotriphosphate), but enhanced by adenosine, ATP breakdown product. Thus, extracellular ATP modulates microglial survival and death in different ways involving P2X(7) receptor activation and ATP degradation to adenosine, respectively. Such Toll-like receptor 4/purinergic signaling may provide a fine regulatory system of neuroinflammation through modulating the microglial cell number.  相似文献   

19.
We investigated the expression of purinoceptors in human dendritic cells, providing functional, pharmacological, and biochemical evidence that immature and mature cells express P2Y and P2X subtypes, coupled to increase in the intracellular Ca(2+), membrane depolarization, and secretion of inflammatory cytokines. The ATP-activated Ca(2+) change was biphasic, with a fast release from intracellular stores and a delayed influx across the plasma membrane. A prolonged exposure to ATP was toxic to dendritic cells that swelled, lost typical dendrites, became phase lucent, detached from the substrate, and eventually died. These changes were highly suggestive of expression of the cytotoxic receptor P2X(7), as confirmed by ability of dendritic cells to become permeant to membrane impermeant dyes such as Lucifer yellow or ethidium bromide. The P2X(7) receptor ligand 2',3'-(4-benzoylbenzoyl)-ATP was a better agonist then ATP for Ca(2+) increase and plasma membrane depolarization. Oxidized ATP, a covalent blocker of P2X receptors, and the selective P2X(7) antagonist KN-62 inhibited both permeabilization and Ca(2+) changes induced by ATP. The following purinoceptors were expressed by immature and mature dendritic cells: P2Y(1), P2Y(2), P2Y(5), P2Y(11) and P2X(1), P2X(4), P2X(7). Finally, stimulation of LPS-matured cells with ATP triggered release of IL-1 beta and TNF-alpha. Purinoceptors may provide a new avenue to modulation of dendritic cells function.  相似文献   

20.
Chemically funtionalized analogues of antagonists of the P2X(7) receptor, an ATP-gated cation channel, were synthesized as tools for biophysical studies of the receptor. These functionalized congeners were intended for use in chemical conjugation with retention of biological potency. The antagonists were L-tyrosine derivatives, related to [N-benzyloxycarbonyl-O-(4-arylsulfonyl)-L-tyrosyl]benzoylpiperazine (such as MRS2409, 2). The analogues were demonstrated to be antagonists in an assay of human P2X(7) receptor function, consisting of inhibition of ATP-induced K(+) efflux in HEK293 cells expressing the recombinant receptor. The analogues were of the general structure R(1)-Tyr(OR(2))-piperazinyl-R(3), in which three positions (R(1)-R(3)) were systematically varied in structure through introduction of chemically reactive groups. Each of the three positions was designed to incorporate a 3- or 4-nitrophenyl group. The nitro groups were reduced using NaBH(4)-copper(II) acetylacetonate to amines, which were either converted to the isothiocyanate groups, as potential affinity labels for the receptor, or acylated, as models for conjugation. An alternate route to N(alpha)-3-aminobenzyloxycarbonyl functionalization was devised. The various positions of functionalization were compared for effects on biological potency, and the R(2) and R(3) positions were found to be most amenable to derivatization with retention of high potency. Four dimeric permutations of the antagonists were synthesized by coupling each of the isothiocyanate derivatives to either the precursor amine or to other amine congeners. Only dimers linked at the R(2)-position were potent antagonists. In concentration-response studies, two derivatives, a 3-nitrobenzyloxycarbonyl derivative 18 and a 4-nitrotoluenesulfonate 26b, displayed IC(50) values of roughly 100 nM as antagonists of P2X(7) receptor-mediated K(+) flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号