首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radiation hybrid (RH) mapping was used to construct a map of 11 markers in the distal 4 Mb of the short arm of chromosome 4, the region containing the Huntington disease gene. Two different methods for deriving the order of the markers were compared and both arrived at the same order as being the most likely. This order is also consistent with both the physical map constructed using pulsed-field gel electrophoresis (PFGE) and the meiotic linkage map. Comparing the RH map to the map determined by PFGE provided the means to equate RH map units (centirays) with actual physical distance in kilobases of DNA. In addition, a simple procedure for reducing the complexity of human DNA in radiation hybrids is described. One cell line isolated using this procedure contains, as its only human DNA, approximately 2 Mb surrounding the Huntington disease gene.  相似文献   

2.
3.
By the combination of cosmid cloning, chromosomal jumping, and pulsed-field gel electrophoresis (PFGE), we have fine-mapped the HLA-A subregion of the human major histocompatibility complex (MHC). Through the isolation of a class I jumping clone, the Q alpha-like HLA-G class I gene has been placed within 100 kb of HLA-H. The tight physical linkage of these class I genes has been further supported by hybridizing PFGE blots with locus-specific probes. It has been found that both of the above class I genes are linked to HLA-A, with HLA-H residing no more than 200 kb from the HLA-A gene. These data support the possible existence of a Q alpha-like subregion composed of nonclassical HLA class I genes within the human MHC linked telomerically to the HLA-A locus.  相似文献   

4.
At least two polymorphic Alu insertions have been previously identified and characterized within the class I region of the major histocompatibility complex (MHC). We have identified another two new polymorphic Alu insertions, AluyHJ and AluyHF, located near HLA-J and HLA-F, respectively, within the a block of the MHC. Here we report on (1) the haplotypic relationships between the Alu dimorphisms and the HLA-A locus within a panel of 51 IHW homozygous cell lines representing at least 36 HLA class I haplotypes, (2) the Alu genotype, allele, and haplotype frequencies present in the Australian Caucasians and Japanese populations, and (3) the frequency of association between the different Alu dimorphisms and the HLA-A alleles in 109 Australian Caucasians and 99 Japanese. PCR was used to detect the presence or absence of insertion for AluyHJ, AluyHG, and AluyHF within the DNA samples prepared from the cell lines and the two population groups that had been previously typed for HLA-A. In the homozygous cell lines, all three Alu insertions were found in only one HLA class I haplotype (HLA-A1, -B57, -Cw6), no Alu insertions were detected in six HLA class I haplotypes and one or more of the Alu insertions were found in 29 HLA class I haplotypes. At least one of the Alu insertions was found in about 86% of the Japanese and Australian individuals, with the AluyHJ generally related inversely to AluyHG and/or AluyHF. The gene frequency of the AluyHJ and AluyHF insertions was significantly different (p <0.05) BETWEEN JAPANESE AND AUSTRALIANS, WHEREAS THERE WAS NO DIFFERENCE (P > 0.05) between the frequencies of AluyHG in the two populations. The Alu haplotype frequencies were also significantly different between the Japanese and the Australians. In the cell lines and the population groups, the AluyHJ insertion was most frequently found associated with HLA-A1 or A24, AluyHG with HLA-A2, and AluyHF with HLA-A2, -A10, or -A26. This study suggests that the three polymorphic Alu elements have been inserted into the a block of the MHC in different progenitor groups and therefore will be useful lineage and linkage markers in human population studies and for elucidating the evolution of HLA class I haplotypes.  相似文献   

5.
Mutants that had lost expression of alleles of one or more HLA loci were isolated with immunoselection after gamma-irradiation of a human lymphoblastoid cell line LCL 721. DNAs from the mutants were digested with restriction endonucleases and analyzed by Southern blotting using probes for class I HLA genes. Eight polymorphic cut sites for HindIII and PvuII were discovered in class I-associated sequences of LCL 721. Losses of specific fragments generated by restriction enzymes could be associated with losses of specific antigenic expressions and it was possible in this way to assign HLA-A1, HLA-A2, and HLA-B8 to specific DNA fragments. Patterns of gamma-ray-induced segregations of DNA fragments permitted rough linkage alignment of about 30% of the fragments generated by PvuII. The resultant map showed that there are class I HLA genes on the telomeric side of the HLA-A locus. Restriction enzyme site polymorphisms were also examined in a panel of DNAs isolated from peripheral blood lymphocytes (PBLs) of HLA-typed individuals. This panel of PBL DNA complemented the analysis using the HLA deletion mutants.  相似文献   

6.
To avoid interpretative problems due to restriction fragment length polymorphisms, the monosomy 6 mutant cell line BM19.7 was employed to establish a molecular map of the human major histocompatibility (HLA) complex in the A2,B13,Bw4,DRw6,DRw52,DQw1,DPw2 haplotype. Results were obtained mainly by field-inversion gel electrophoresis and Southern blotting techniques. The map extends to 4800 kb and includes the HLA complex with a length of 4200 kb. Five HTF islands could be positioned on the map. The class I region has a size of about 2000 kb and includes nonclassical HLA class I genes, some of which must be localized within 200 kb telomeric of HLA-A. A new class I gene, cda12, distinct from HLA-A, HLA-B, or HLA-C, has been localized within 50 kb from HLA-A. The class I region contains a gap of about 500 kb, just telomeric of HLA-C, in which further class I genes could not be detected. The class II region has a size of 1000 kb, which is separated from the class I region by about 1200 kb. The 5' end of the HLA-B gene is situated centromeric, giving an orientation opposite to that of the TNFA and TNFB loci. The estimated length of the HLA complex correlates well with its size determined cytogenetically using mutant cell lines with interstitial deletions.  相似文献   

7.
We have used the human teratocarcinoma-derived embryonal carcinoma cell line Tera-2 cl. 13 to explore the putative expression of novel HLA class I(-like) genes. Serological analyses revealed that Tera-2 cells do not express polymorphic HLA class I (-A, -B, -C) specificities, but do express HLA class I-like antigens. These phenotypic properties parallel those of certain mouse embryonal carcinoma cells. To study the expression of HLA class I(-like) genes in the Tera-2 cells two different approaches were used. Screening of a Tera-2 cDNA library with a full-length HLA class I cDNA probe under conditions that would allow for the identification of relatively distinct HLA class I-like sequences yielded 27 positive clones, all of which were of the regular HLA-A, -B, -C type. Reverse northern hybridizations of the restriction enzyme-digested Tlab region comprising cosmids with Tera-2 cDNA as the probe resulted in the identification of several putative human genes whose equivalents map within the mouse Tla region. However, none of these genes appeared to be structurally related to HLA class I. A putative H3.3 histone gene was identified in the proximal Tla region of the C57BL/10 mouse. It is concluded that no structural homologues of mouse Qa/Tla genes are expressed in the human developmental cell line Tera-2.  相似文献   

8.
Hereditary hemochromatosis (HFE) is an inherited disorder whose gene lies in the proximity of the histocompatability antigen (HLA) class I region, on 6p21.3. Despite efforts in refining the HFE region, a number of informative DNA markers, linked to the disease locus and amenable to use in an assay based on the polymerase chain reaction (PCR) is available. The gene content of this region is high, and the HFE gene has not so far been identified. We have used a strategy based on PCR protocols potentially able to detect both polymorphisms and expressed sequences. This approach has been applied to a 700-kb stretch (approximately) of DNA corresponding to the insert of a Centre d'Etude du Polymorphisme Humain yeast artificial chromosome (225 B1) of the possible candidate region. Five new polymorphisms have been detected among 20 specific fragments isolated. Four of them are tightly linked to the HFE locus. Because of the strong linkage disequilibrium with the disease demonstrated by these markers, they could represent starting points for the identification and characterization of the HFE gene. The remaining non-polymorphic fragments, being amplifiable and in most cases linked to NotI sites, may be useful starting points for the generation of a genomic contig of band 6p21.3 and for gene identification.  相似文献   

9.
The large-scale organization and polymorphism of the HLA class I region was investigated by pulsed field gel (PFG) fractionation of DNA from various HLA-typed cell lines cleaved by different 'rare cutter' restriction enzymes, followed by hybridization with 'general' and locus-specific HLA probes. Results indicate that (i) most HLA class I sequences are contained in a 340 kb MluI DNA fragment which also carries the HLA-A gene; (ii) HLA-A, -B and -C genes are present on different fragments bounded by 'HTF islands' (CpG-rich, unmethylated DNA regions containing multiple sites for 'rare cutter' enzymes) which generally coincide with the 5' regions of expressed genes; and (iii) very little fragment size polymorphism is seen, implying that expansion/contraction events in the HLA class I region due to unequal crossing over (as documented in the mouse class I system) are infrequently found in the human population.  相似文献   

10.
Smith WP  Vu Q  Li SS  Hansen JA  Zhao LP  Geraghty DE 《Genomics》2006,87(5):561-571
We carried out a resequencing project that examined 552 kb of sequence from each of 46 individual HLA haplotypes representing a diversity of HLA allele types, generating nearly 27 Mb of fully phased genomic sequence. Haplotype blocks were defined extending from telomeric of HLA-F to centromeric of HLA-DP including in total 5186 MHC SNPs. To investigate basic questions about the evolutionary origin of common HLA haplotypes, and to obtain an estimate of rare variation in the MHC, we similarly examined two additional sets of samples. In 19 independent HLA-A1, B8, DR3 chromosomes, the most common HLA haplotype in Northern European Caucasians, variation was found at 11 SNP positions in the 3600-kb region from HLA-A to DR. Partial resequencing of 282 individuals in the gene-dense class III region identified significant variability beyond what could have been detected by linkage to common SNPs.  相似文献   

11.
Class I gene contraction within the HLA-A subregion of the human MHC.   总被引:4,自引:0,他引:4  
C P Venditti  M J Chorney 《Genomics》1992,14(4):1003-1009
Individuals expressing either the HLA-A24 or the HLA-A23 histocompatibility antigens have been found to possess an HLA-A class I subregion approximately 50 kb smaller in size than those studied from individuals expressing other HLA-A haplotypes. This originally manifested itself as a haplotype-associated size variation in the NotI and MluI megabase fragments observed on pulsed-field electrophoresis gels after blotting and probing with HLA-A subregion-specific genomic probes. The contracted region falls between the HLA-A and the HLA-G class I genes and specifically includes the novel HLA-A-related pseudogene, HLA-H, as well as the adjacent deteriorated class I pseudogene, 7.0 p. The intactness of locus D6S128, defined by probe pMC6.7 located telomeric to the HLA-H gene, demonstrates that the distal rearrangement point falls within a 20-kb stretch of DNA separating HLA-H from pMC6.7. This extends a previous report regarding variation in class I gene number within the human major histocompatibility complex and precisely localizes the genomic residence of sequences that may define a recombination hot spot. Because the size variation maps to a recombinogenic area, its characterization may ultimately reveal important biological information relevant to the events that shaped the organization of the human HLA class I multigene family.  相似文献   

12.
13.
In the past few years it has been possible by combining enzymatic cleavage of genomic DNA and the Southern blot hybridization technique to explore the endonuclease recognition site polymorphism of the MHC. HLA class I and DR and DQ alpha and beta class II specific probes as well as human C4 and Bf class III probes were used. All these probes were shown to cross-hybridize with DNA from pigs, cattle, sheep and horses. Hybridization of human genomic DNA with a class I probe showed 15-25 bands per genome depending on the enzyme used. Distinct endonucleases generated clusters of restriction fragments (RF) in HLA-informative families which correlated with HLA specificities. While numerous clusters were found associated with HLA-A alleles almost no cluster was related to HLA B or C specificities. Similarly, class II probes provided a large number of clusters. The existence of these clusters suggested that some polymorphic restriction sites are found in strong linkage disequilibrium and that the underlying mechanism might be gene conversion with heteroduplex correction. Since the degree of polymorphism detected by RF appears to be greater than the polymorphism defined by more traditional methods stronger associations between RF and pathological conditions are to be expected. Southern blot analysis was applied to unrelated pigs and sheep, as well as to families. Preliminary studies have also been performed on a few unrelated cattle and horses. Depending on the endonuclease used the HLA class I probe hybridized with around 15 bands in MHC heterozygous pigs and ruminants while up to 20 bands were found in horses. Therefore, a several-fold greater number of potential class I genes exist compared to those actually expressed. With the class II beta probe, cattle and sheep showed around 10 bands whereas 15 were observed in pigs and around 20 in horses. Based on limited results obtained with DQ alpha and beta probes and with the DR alpha probe there appeared to be fewer of these respective genes. Only one C4 gene has been detected in pig and this gene maps within the SLA region. Hybridization with the human C4 probe in cattle, sheep and horses revealed two to four bands which could possibly account for two C4 genes. To date their linkage to the MHC has not been established. The Southern blot hybridization technique represents a powerful tool for future immunogenetic studies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The technical developments and expanded indications for testicular sperm extraction (TESE) with intracytoplasmic sperm injection (ICSI) provide great advantages for patients with non-obstructive azoospermia. Such success, however, also means that genetic abnormalities in non-obstructive azoospermia can be transmitted to the next generation, demonstrating the importance of being able to understand the genetic background of non-obstructive azoospermia. We have previously reported that human leukocyte antigens (HLA)-A33 and -B44 in the HLA class I region and the HLA-DRB1*1302 allele in the HLA class II region are linked to susceptibility to non-obstructive azoospermia in Japanese men. However, strong linkage of HLA-DRB1*1302 with HLA-A33 and -B44 is also evident in the Japanese population. Thus, uncertainty prevails as to whether the HLA class I or class II molecule is more directly associated with non-obstructive azoospermia. In the present study, we performed association analysis with 21 polymorphic microsatellite markers identified near the HLA genes to map the gene involved in the development of non-obstructive azoospermia more precisely. Microsatellite markers located in the HLA class I region or the class III region showed no statistically significant association with this disorder, although once again the HLA-A33 and -B44 alleles showed a significant association. In contrast, some of the microsatellite markers in the HLA class II region and at the HLA-DRB1 and -DQB1 loci displayed strong associations with non-obstructive azoospermia. Taken together, our previous and present data suggest that the critical region for development of non-obstructive azoospermia is near the HLA-DRB1 and -DQB1 segments in the HLA class II region.  相似文献   

15.
Adams EJ  Parham P 《Immunogenetics》2001,53(3):200-208
To investigate how MHC class I genes have changed in the approximately 5 million years since chimpanzees and humans diverged, we characterized six genomic fragments ranging in size from 5.1 to 6.1 kb, each containing the complete coding region, introns, and flanking regions of one of the following chimpanzee class I genes: Patr-A, Patr-E, Patr-F, Patr-G, Patr-H, and Patr-J. In humans, these genes are closely linked within the class I region and are representatives of three distinct functional categories of class I genes: the highly polymorphic Ia genes (HLA-A), the conserved Ib genes (HLA-E, HLA-F, and HLA-G), and the class I pseudogenes (HLA-H and HLA-J). Southern blot analysis of chimpanzee and human class I genes produced nearly identical patterns, suggesting that the organization and linkage of these genes differs little in the two species. Comparison of the chimpanzee fragment sequences with their human orthologues revealed structural conservation of these genes yet differences in their degree of functional constraint. This is apparent in the location and nature of the amino acid changes between species and the substantial differences in levels of divergence at functional and nonfunctional sites. Additionally, there is no correlation between patterns of divergence at these sites and intraspecific variation, an observation explained by either appreciable gene conversion or high levels of recombination, the latter unlikely given the observed strong linkage disequilibrium of these loci.  相似文献   

16.
For the purpose of cloning the gene of myotonic dystrophy (DM) using the technique of reverse genetics, we have introduced new methods such as microdissection, a YAC library and a Not I linking library and cloned many DNA fragments derived from the region of 19q13.2. Then we have assigned these to chromosome 19 by linkage map (CEPH families and linkage disequilibrium) and physical map (PFGE and in situ hybridization). Here we have described these methods.  相似文献   

17.
The major histocompatibility complex (MHC) in mammals codes for antigen‐presenting proteins. For this reason, the MHC is of great importance for immune function and animal health. Previous studies revealed this gene‐dense and polymorphic region in river buffalo to be on the short arm of chromosome 2, which is homologous to cattle chromosome 23. Using cattle‐derived STS markers and a river buffalo radiation hybrid (RH) panel (BBURH5000), we generated a high‐resolution RH map of the river buffalo MHC region. The buffalo MHC RH map (cR5000) was aligned with the cattle MHC RH map (cR12000) to compare gene order. The buffalo MHC had similar organization to the cattle MHC, with class II genes distributed in two segments, class IIa and class IIb. Class IIa was closely associated with the class I and class III regions, and class IIb was a separate cluster. A total of 53 markers were distributed into two linkage groups based on a two‐point LOD score threshold of ≥8. The first linkage group included 32 markers from class IIa, class I and class III. The second linkage group included 21 markers from class IIb. Bacterial artificial chromosome clones for seven loci were mapped by fluorescence in situ hybridization on metaphase chromosomes using single‐ and double‐color hybridizations. The order of cytogenetically mapped markers in the region corroborated the physical order of markers obtained from the RH map and served as anchor points to align and orient the linkage groups.  相似文献   

18.
We have used radiation hybrid (RH) mapping and pulsed-field gel electrophoresis (PFGE) to determine the order and positions of 28 DNA markers from the distal region of the long arm of human chromosome 21. The maps generated by these two methods are in good agreement. This study, combined with that of D. R. Cox et al. (1990, Science 250:245-250), results in an RH map that covers the long arm of chromosome 21 (21q). We have used a subtelomeric probe to show that our map includes the telomere and have identified single-copy genes and markers within 200 kbp of the telomere. Comparison of the physical and RH maps with genetic linkage maps shows "hot spots" of meiotic recombination in the distal region, one of which is close to the telomere, in agreement with previous cytogenetic observations of increased recombination frequency near telomeres.  相似文献   

19.
20.
The major histocompatibility complex (MHC) shows a remarkable conservation of particular HLA antigens and haplotypes in linkage disequilibrium in most human populations, suggesting the existence of a convergent evolution. A recent example of such conservation is the association of particular HLA haplotypes with the HFE mutations. With the objective of exploring the significance of that association, the present paper offers an analysis of the linkage disequilibrium between HLA alleles or haplotypes and the HFE mutations in a Portuguese population. Allele and haplotype associations between HLA and HFE mutations were first reviewed in a population of 43 hemochromatosis families. The results confirmed the linkage disequilibrium of the HLA haplotype HLA-A3-B7 and the HLA-A29 allele, respectively, with the HFE mutations C282Y and H63D. In order to extend the study of the linkage disequilibrium between H63D and the HLA-A29-containing haplotypes in a normal, random population, an additional sample of 398 haplotypes was analyzed. The results reveal significant linkage disequilibrium between the H63D mutation and all HLA-A29-containing haplotypes, favoring the hypothesis of a co-selection of H63D and the HLA-A29 allele itself. An insight into the biological significance of this association is given by the finding of significantly higher CD8(+) T-lymphocyte counts in subjects simultaneously carrying the H63D mutation and the HLA-A29 allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号