首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis can be activated by nonsubstrate interfaces such as phosphatidylcholine micelles or bilayers. This activation corresponds with partial insertion into the interface of two tryptophans, Trp-47 in helix B and Trp-242 in a loop, in the rim of the alphabeta-barrel. Both W47A and W242A have much weaker binding to interfaces and considerably lower kinetic interfacial activation. Tryptophan rescue mutagenesis, reinsertion of a tryptophan at a different place in helix B in the W47A mutant or in the loop (residues 232-244) of the W242A mutant, has been used to determine the importance and orientation of a tryptophan in these two structural features. Phosphotransferase and phosphodiesterase assays, and binding to phosphatidylcholine vesicles were used to assess both orientation and position of tryptophans needed for interfacial activity. Of the helix B double mutants, only one mutant, I43W/W47A, has tryptophan in the same orientation as Trp-47. I43W/W47A shows recovery of phosphatidylinositol-specific phospholipase C (PC) activation of d-myo-inositol 1,2-cyclic phosphate hydrolysis. However, the specific activity toward phosphatidylinositol is still lower than wild type enzyme and high activity with phosphatidylinositol solubilized in 30% isopropyl alcohol (a hallmark of the native enzyme) is lost. Reinserting a tryptophan at several positions in the loop composed of residues 232-244 partially recovers PC activation and affinity of the enzyme for lipid interfaces as well as activation by isopropyl alcohol. G238W/W242A shows an enhanced activation and affinity for PC interfaces above that of wild type. These results provide constraints on how this bacterial phosphatidylinositol-specific phospholipase C binds to activating PC interfaces.  相似文献   

2.
Guo S  Zhang X  Seaton BA  Roberts MF 《Biochemistry》2008,47(14):4201-4210
The Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), an interfacial enzyme associated with prokaryotic infectivity, is activated by binding to zwitterionic surfaces, particularly phosphatidycholine (PC). Two tryptophan residues (Trp47 in the two-turn helix B and Trp242 in a disordered loop) at the rim of the barrel structure are critical for this interaction. The helix B region (Ile43 to Gly48) in wild-type PI-PLC orients the side chains of Ile43 and Trp47 so that they pack together and form a hydrophobic protrusion from the protein surface that likely facilitates initial membrane binding. In previous studies we reported that in the crystal structure of the dimeric W47A/W242A mutant, which is unable to bind to PC, the helix B region has been reorganized by the mutation into an extended loop. Here we report the construction and characterization (catalytic activity, fluorescence, and NMR studies) of a series of PI-PLC mutants targeting helix B residues and surrounding regions to explore what is needed to stabilize the "membrane-active" conformation of the helix B region. Results strongly suggest that, while hydrophobic groups and presumably an intact helix B are critical for the initial binding of PI-PLC to membranes, disruption of helix B to allow enzyme dimerization is what leads to the activated PI-PLC conformation.  相似文献   

3.
The crystal structure of the W47A/W242A mutant of phosphatidylinositol-specific phospholipase C (PI-PLC) from Bacillus thuringiensis has been solved to 1.8A resolution. The W47A/W242A mutant is an interfacially challenged enzyme, and it has been proposed that one or both tryptophan side chains serve as membrane interfacial anchors (Feng, J., Wehbi, H., and Roberts, M. F. (2002) J. Biol. Chem. 277, 19867-19875). The crystal structure supports this hypothesis. Relative to the crystal structure of the closely related (97% identity) wild-type PI-PLC from Bacillus cereus, significant conformational differences occur at the membrane-binding interfacial region rather than the active site. The Trp --> Ala mutations not only remove the membrane-partitioning aromatic side chains but also perturb the conformations of the so-called helix B and rim loop regions, both of which are implicated in interfacial binding. The crystal structure also reveals a homodimer, the first such observation for a bacterial PI-PLC, with pseudo-2-fold symmetry. The symmetric dimer interface is stabilized by hydrophobic and hydrogen-bonding interactions, contributed primarily by a central swath of aromatic residues arranged in a quasiherringbone pattern. Evidence that interfacially active wild-type PI-PLC enzymes may dimerize in the presence of phosphatidylcholine vesicles is provided by fluorescence quenching of PI-PLC mutants with pyrene-labeled cysteine residues. The combined data suggest that wild-type PI-PLC can form similar homodimers, anchored to the interface by the tryptophan and neighboring membrane-partitioning residues.  相似文献   

4.
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC), a bacterial model for the catalytic domain of mammalian PI-PLC enzymes, was cross-linked by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride to probe for the aggregation and/or conformational changes of PI-PLC when bound to activating phosphatidylcholine (PC) interfaces. Dimers and higher order multimers (up to 31% of the total protein when cross-linked at pH 7) were observed when the enzyme was cross-linked in the presence of PC vesicles. Aggregates were also detected with PI-PLC bound to diheptanoyl-PC (diC(7)PC) micelles, although the fraction of cross-linked multimers (19% at pH 7) was lower than when the enzyme was cross-linked in the presence of vesicles. PI-PLC cross-linked in the presence of a diC(7)PC interface exhibited an enhanced specific activity for PI cleavage. The extent of this cross-linking-enhanced activation was reduced in PI-PLC mutants lacking either tryptophan in the rim (W47A and W242A) of this (betaalpha)(8)-barrel protein. The higher activity of the native protein cross-linked in the presence of diC(7)PC correlated with an increased affinity of the protein for two diC(7)PC molecules as detected by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In contrast to wild type protein, W47A and W242A had only a single diC(7)PC tightly associated when cross-linked in the presence of that activator molecule. These results indicate that (i) each rim tryptophan residue is involved in binding a PC molecule at interfaces, (ii) the affinity of the enzyme for an activating PC molecule is enhanced when the protein is bound to a surface, and (iii) this conformation of the enzyme with at least two PC bound that is stabilized by chemical cross-linking interacts more effectively with activating interfaces, leading to higher observed specific activities for the phosphotransferase reaction.  相似文献   

5.
6.
Single tryptophan mutant proteins of a catalytically active domain III recombinant protein (PE24) from Pseudomonas aeruginosa exotoxin A were prepared by site-directed mutagenesis. The binding of the dinucleotide substrate, NAD+, to the PE24 active site was studied by exploiting intrinsic tryptophan fluorescence for the wild-type, single Trp, and tryptophan-deficient mutant proteins. Various approaches were used to study the substrate binding process, including dynamic quenching, CD spectroscopy, steady-state fluorescence emission analysis, NAD+-glycohydrolase activity, NAD+ binding analysis, protein denaturation experiments, fluorescence lifetime analysis, steady-state anisotropy measurement, stopped flow fluorescence spectroscopy, and quantum yield determination. It was found that the conservative replacement of tryptophan residues with phenylalanine had little or no effect on the folded stability and enzyme activity of the PE24 protein. Dynamic quenching experiments indicated that when bound to the active site of the enzyme, the NAD+ substrate protected Trp-558 from solvent to a large extent but had no effect on the degree of solvent exposure for tryptophans 417 and 466. Also, upon substrate binding, the anisotropy of the Trp-417(W466F/W558F) protein showed the largest increase, followed by Trp-466(W417F/W558F), and there was no effect on Trp-558(W417F/W466F). Furthermore, the intrinsic tryptophan fluorescence exhibited the highest degree of substrate-induced quenching for the wild-type protein, followed in decreasing order by Trp-417(W466F/W558F), Trp-558(W417F/W466F), and Trp-466(W417F/W558F). These data provide evidence for a structural rearrangement in the enzyme domain near Trp-417 invoked by the binding of the NAD+ substrate.  相似文献   

7.
Y Huang  Z Lu  M Ma  N Liu  Y Chen 《BMB reports》2012,45(8):452-457
Diketoreductase (DKR) from Acinetobacter baylyi contains two tryptophan residues at positions 149 and 222. Trp-149 and Trp-222 are located along the entry path of substrate into active site and at the dimer interface of DKR, respectively. Single and double substitutions of these positions were generated to probe the roles of tryptophan residues. After replacing Trp with Ala and Phe, biochemical and biophysical characteristics of the mutants were thoroughly investigated. Enzyme activity and substrate binding affinity of W149A and W149F were remarkably decreased, suggesting that Trp-149 regulates the position of substrate at the binding site. Meanwhile, enzyme activity of W222F was increased by 1.7-fold while W222A was completely inactive. In addition to lower thermostability of Trp-222 mutants, molecular modeling of the mutants revealed that Trp-222 is vital to protein folding and dimerization of the enzyme. [BMB Reports 2012; 45(8): 452-457].  相似文献   

8.
Bacteriorhodopsin contains 8 tryptophan residues distributed across the membrane-embedded helices. To study their possible functions, we have replaced them one at a time by phenylalanine; in addition, Trp-137 and -138 have been replaced by cysteine. The mutants were prepared by cassette mutagenesis of the synthetic bacterio-opsin gene, expression and purification of the mutant apoproteins, renaturation, and chromophore regeneration. The replacement of Trp-10, Trp-12 (helix A), Trp-80 (helix C), and Trp-138 (helix E) by phenylalanine and of Trp-137 and Trp-138 by cysteine did not significantly alter the absorption spectra or affect their proton pumping. However, substitution of the remaining tryptophans by phenylalanine had the following effects. 1) Substitution of Trp-86 (helix C) and Trp-137 gave chromophores blue-shifted by 20 nm and resulted in reduced proton pumping to about 30%. 2) As also reported previously (Hackett, N. R., Stern, L. J., Chao, B. H., Kronis, K. A., and Khorana, H. G. (1987) J. Biol. Chem. 262, 9277-9284), substitution of Trp-182 and Trp-189 (helix F) caused large blue shifts (70 and 40 nm, respectively) in the chromophore and affected proton pumping. 3) The substitution of Trp-86 and Trp-182 by phenylalanine conferred acid instability on these mutants. The spectral shifts indicate that Trp-86, Trp-182, Trp-189, and possibly Trp-137 interact with retinal. It is proposed that these tryptophans, probably along with Tyr-57 (helix B) and Tyr-185 (helix F), form a retinal binding pocket. We discuss the role of tryptophan residues that are conserved in bacteriorhodopsin, halorhodopsin, and the related family of opsin proteins.  相似文献   

9.
Yu BZ  Janssen MJ  Verheij HM  Jain MK 《Biochemistry》2000,39(19):5702-5711
A well-defined region of pancreatic and other secreted phospholipase A2 (PLA2), which we call the i-face, makes a molecular contact with the interface to facilitate and control the events and processivity of the interfacial catalytic turnover cycles. The structural features of the i-face and its allosteric relationship to the active site remain to be identified. As a part of the calcium binding (26-34) loop, Leu-31 is located on the surface near the substrate binding slot of PLA2. Analysis of the primary rate and equilibrium parameters of the Leu-31 substitution mutants of the pig pancreatic PLA2 shows that the only significant effect of the substitution is to impair the chemical step at the zwitterionic interface in the presence of added NaCl, and only a modest effect is seen on kcat at the anionic interface. Leu-31 substitutions have little effect on the binding of the enzyme to the interface; the affinity for certain substrate mimics is modestly influenced in W3F, L31W double mutant. The fluorescence emission results with the double mutant show that the microenvironment of Trp-31 is qualitatively different at the zwitterionic versus anionic interfaces. At both of the interfaces Trp-31 is not shielded from the bulk aqueous environment as it remains readily accessible to acrylamide and water. The NaCl-induced change in the Trp-31 emission spectrum of the double mutant on the zwitterionic interface is similar to that seen on the binding to the anionic interface. Together, the kinetic and spectroscopic results show that the form of PLA2 at the zwitterionic interface (Ez) is distinguishably different from the catalytically more efficient form at the anionic interface (Ea). This finding provides a structural basis for the two-state model for kcat activation by the anionic interface. In conjunction with earlier results we suggest that neutralization of certain cationic residues of PLA2 exerts a control on the calcium loop through residue 31.  相似文献   

10.
The interactions of PI-PLC with nonsubstrate zwitterionic [phosphatidylcholine (PC)] and anionic [phosphatidylmethanol (PMe), phosphatidylserine, phosphatidylglycerol, and phosphatidic acid] interfaces that affect the catalytic activity of PI-PLC have been examined. PI-PLC binding is strongly coupled to vesicle curvature and is tighter at acidic pH for all of the phospholipids examined. PI-PLC binds to small unilamellar vesicles (SUVs) of anionic lipids with much higher affinity (K(d) is 0.01-0.07 microM for a site consisting of n = 100 +/- 25 lipids when analyzed with a Langmuir adsorption isotherm) than to zwitterionic PC SUVs (K(d) is 5-20 microM and n = 8 +/- 3). The binding to PC surfaces is dominated by hydrophobic interactions, while binding to anionic surfaces is dominated by electrostatic interactions. The contributions of specific cationic side chains and hydrophobic groups at the rim of the alpha beta-barrel to zwitterionic and anionic vesicle binding have been assessed with mutagenesis. The results are used to explain how PC activates the enzyme for both phosphotransferase and cyclic phosphodiesterase activities.  相似文献   

11.
Single tryptophan-containing mutants of low adenylylation state Escherichia coli glutamine synthetase have been studied by frequency-domain fluorescence spectroscopy in the presence of various substrates and inhibitors. At pH 6.5, the Mn-bound wild-type enzyme (wild type has two tryptophans/subunit) and the mutant enzymes exhibit heterogeneous fluorescence decay kinetics; the individual tryptophans are adequately described by a triple exponential decay scheme. The recovered lifetime values are 5.9 ns, 2.6 ns, and 0.4 ns for Trp-57 and 5.8 ns, 2.3 ns, and 0.4 ns for Trp-158. These values are nearly identical to the previously reported results at pH 7.5 (Atkins, W.M., Stayton, P.S., & Villafranca, J.J., 1991, Biochemistry 30, 3406-3416). In addition, Trp-57 and Trp-158 both exhibit an ATP-induced increase in the relative fraction of the long lifetime component, whereas only Trp-57 is affected by this ligand at pH 7.5. The transition-state analogue L-methionine-(R,S)-sulfoximine (MSOX) causes a dramatic increase in the fractional intensity of the long lifetime component of Trp-158. This ligand has no effect on the W158S mutant protein and causes a small increase in the fractional intensity of the long lifetime component of the W158F mutant protein. Addition of glutamate to the ATP complex, which affords the gamma-glutamylphosphate-ADP complex, results in the presence of new lifetime components at 7, 3.2, and 0.5 ns for Trp-158, but has no effect on Trp-57. Similar results were obtained when ATP was added to the MSOX complex; Trp-57 exhibits heterogeneous fluorescence decay with lifetimes of 7, 3.5, and 0.8 ns. Decay kinetics of Trp-158 are best fit to a nearly homogeneous decay with a lifetime of 5.5 ns in the MSOX-ATP inactivated complex. These results provide a model for the sequence of structural and dynamic changes that take place at the Trp-57 loop and the central loop (Trp-158) during several intermediate stages of catalysis.  相似文献   

12.
Cordat E  Leblanc G  Mus-Veteau I 《Biochemistry》2000,39(15):4493-4499
To improve the structural organization model of melibiose permease, we assessed the individual contributions of the N-terminal tryptophans to the transporter fluorescence variations induced by the binding of cations and beta-configured sugars, by replacement of the six N-terminal tryptophans by phenylalanines and the study of the signal changes. Only two mutations, W116F located in helix IV and W128F located in the cytoplasmic loop 4-5, impair permease activity. The intrinsic fluorescence spectroscopy analysis of the other mutants suggests that W54, located in helix II, W116, and W128 are mostly responsible for the cation-induced fluorescence variations. These tryptophans, W116 and W128, would also be responsible for the beta-galactoside-induced fluorescence changes observed in the N-terminal domain of the transporter. The implication of W116 and W128 in both the cation- and beta-galactoside-induced fluorescence variations led us to investigate in detail the effects of their mutations on the functional properties of the permease. The results obtained suggest that the domains harboring the two tryptophans, or the residues themselves, play a critical role in the mechanism of Na(+)/sugar symport. Taken together, the results presented in this paper and previous results are consistent with a fundamental role of helix IV in connecting cation- and sugar-binding sites of the melibiose permease.  相似文献   

13.
Biochemical, luminescence and mass spectroscopy approaches indicate that Trp-151 (helix V) plays an important role in hydrophobic stacking with the galactopyranosyl ring of substrate and that Glu-269 (helix VIII) is essential for substrate affinity and specificity. The x-ray structure of the lactose permease (LacY) with bound substrate is consistent with these conclusions and suggests that a possible H-bond between Glu-269 and Trp-151 may play a critical role in the architecture of the binding site. We have now probed this relationship by exploiting the intrinsic luminescence of a single Trp-151 LacY with various replacements for Glu-269. Mutations at position 269 dramatically alter the environment of Trp-151 in a manner that correlates with binding affinity of LacY substrates. Furthermore, chemical modification of Trp-151 with N-bromosuccinimide indicates that Glu-269 forms an H-bond with the indole N. It is concluded that 1) an H-bond between the indole N and Glu-269 optimizes the formation of the substrate binding site in the inward facing conformation of LacY, and 2) the disposition of the residues implicated in sugar binding in different conformers suggests that sugar binding by LacY involves induced fit.  相似文献   

14.
Molecular recognition of the importin beta-binding (IBB) domain of importin alpha by importin beta is critical for the nuclear import of protein cargoes containing a classical nuclear localization signal. We have studied the function of four conserved tryptophans of importin beta (Trp-342, Trp-430, Trp-472, and Trp-864) located at the binding interface with the IBB domain by systematic alanine substitution mutagenesis. We found that Trp-864 is a mutational hot spot that significantly affects IBB-binding and import activity, whereas residues Trp-342, Trp-430, and Trp-472 are mutationally silent when analyzed individually. Interestingly, the combination of the hot spot at residue Trp-864 with mutations in the other three tryptophans gives rise to a striking synergy that diminishes IBB domain binding by up to approximately 1000-fold and, in turn, abolishes import activity. We propose that importin beta uses the tryptophans to select and stabilize a helical conformation of the IBB domain, which, in turn, conveys specific, high affinity binding.  相似文献   

15.
Single-tryptophan-containing mutants of low adenylation state Escherichia coli glutamine synthetase (wild type has two tryptophans at positions 57 and 158) have been constructed and studied by multifrequency phase/modulation fluorescence spectroscopy. The W57L mutant (retains tryptophan at residue 158) and the W158S mutant (retains tryptophan at residue 57) are both characterized by heterogeneous exponential decay kinetics. Global analysis indicates that for the Mn-bound form of the enzyme at pH 7.4 the fluorescence of both tryptophans is best described by a sum of three discrete expontials with recovered lifetimes of 4.77, 1.72, and 0.10 ns for Trp-57 and 5.04, 2.28, and 0.13 ns for Trp-158. The wild-type enzyme also exhibits decay kinetics described by a triple-exponential model with similar lifetime components. The individual tryptophans are distinguishable by the fractional intensities of the resolvable lifetimes. The wild-type and W158S enzymes are dominated by the 5-ns component which provides nearly 60% and 65%, respectively, of the fractional intensity at five wavelengths spanning the emission spectrum. In contrast, the W57L enzyme demonstrates a larger fraction of the 2-ns lifetime species (60%) and only 35% of the longer lifetime component. The substrate ATP induces a shift to approximately 90% of the 5-ns component for the wild-type and W158S enzymes, whereas the W57L protein is essentially unaffected by this ligand. Steady-state quenching studies with iodide indicate that addition of ATP results in a 3.0-3.5-fold decrease in the apparent Stern-Volmer quenching constants for the wild-type and W158S enzymes. Phase/modulation experiments at several iodide concentrations indicate that the median, 2 ns, lifetime component is selectively quenched compared to the 5-ns lifetime component. These results suggest a model where ATP binding results in a shift in the equilibrium distribution of microconformational states populated by Trp-57. ATP shifts this equilibrium nearly completely to the states exhibiting the long-lifetime component which, based on quenching studies, is less solvent-accessible than the conformational states associated with the other lifetime components.  相似文献   

16.
Adenylylation of Tyr-397 of each subunit of Escherichia coli glutamine synthetase (GS) down-regulates enzymatic activity in vivo. The overall structure of the enzyme consists of 12 subunits arranged as two hexamers, face to face. Research reported in this paper addresses the question of whether the covalently attached adenylyl group interacts with neighboring amino acid residues to produce the regulatory phenomenon. Wild-type GS has two Trp residues (positions 57 and 158) and the adenylylation site lies within 7-8 A of the Trp-57 loop in the adjacent subunit of the same hexameric ring; Trp-158 is about 35 A from the site of adenylylation. Fluorescence lifetimes and quantum yields have been determined for two fluorophores with wild-type and mutant GS. One fluorophore is epsilon-AMP adenylylated GS (at Tyr-397), and the other fluorophore is the intrinsic protein residue Trp-57. These experiments were conducted in order to detect possible intersubunit interactions between adenylyl groups and the neighboring Trp-57 to search for a role for the Trp-57 loop in the regulation of GS. The fluorescence due to epsilon-AMP of two adenylylated enzymes, wild-type GS and the W158F mutant, exhibits heterogeneous decay kinetics; the data adequately fit to a double exponential decay model with recovered average lifetime values of 18.2 and 2.1 ns, respectively. The pre-exponential factors range from 0.66 to 0.73 for the long lifetime component, at five emission wavelengths. The W57L-epsilon-AMP enzyme yields longer average lifetime values of 19.5 and 2.4 ns, and the pre-exponential factors range from 0.82 to 0.85 for the long lifetime component. An additional residue in the Trp-57 loop, Lys-58, has been altered and the K58C mutant enzyme has been adenylylated with epsilon-AMP on Tyr-397. Lys-58 is near the ATP binding site and may represent a link by which the adenylyl group controls the activity of GS. The fluorescence of epsilon-AMP-adenylylated K58C mutant GS is best described by a triple exponential decay with average recovered lifetime values of 19.9, 4.6, and 0.58 ns, with the largest fraction being the median lifetime component. Relative quantum yields of epsilon-AMP-Tyr-397 were measured in order to determine if static quenching occurs from adenine-indole stacking in the wild-type GS. The relative quantum yield of the epsilon-AMP-adenylylated W57L mutant is larger than the wild-type protein by the amount predicted from the difference in lifetime values: thus, no static quenching is evident.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We have used optically detected magnetic resonance (ODMR) to characterize the degree of solvent availability of the tryptophan residues in lysozyme that are likely to be responsible for the observed phosphorescence. From the phosphorescence spectra, ODMR zero-field splittings (zfs), and ODMR line widths, we concur with the X-ray structure [Blake, C. C., Mair, G. A., North, A. C. T., Phillips, D. C., & Sarma, V. R. (1967) Proc. R. Soc. London, ser. B 167, 365-377] that Trp-62 behaves as an exposed residue and Trp-108 is buried. In addition, we present evidence that ODMR can be used in conjunction with conventional phosphorescence to evaluate the degree of order in the microenvironments of tryptophan in a protein containing several tryptophans. By the specific modification of residues Trp-62 and Trp-108, we have identified those portions of the ODMR lines in the native enzyme that are due to those specific residues. Barring major enzyme conformational changes in the vicinity of unmodified tryptophan residues when Trp-62 or Trp-108 are selectively modified, we find that Trp-108 dominates both the phosphorescence and the ODMR signals in native lysozyme. The results are discussed in view of previous fluorescence findings.  相似文献   

18.
Peptide-induced conformational changes in five isofunctional mutants of calmodulin (CaM), each bearing a single tryptophan residue either at the seventh position of each of the four calcium-binding loops (i.e., amino acids 26, 62, 99, and 135) or in the central helix (amino acid 81) were studied by using fluorescence spectroscopy. The peptides RS20F and RS20CK correspond to CaM-binding amino acid sequence segments of either nonmuscle myosin light chain kinase (nmMLCK) or calmodulin-dependent protein kinase II (CaMPK-II), respectively. Both steady-state and time-resolved fluorescence data were collected from the various peptide-CaM complexes. Steady-state fluorescence intensity measurements indicated that, in the presence of an excess of calcium, both peptides bind to the calmodulin mutants with a 1:1 stoichiometry. The tryptophans located in loops I and IV exhibited red-shifted emission maxima (356 nm), high quantum yields (0.3), and long average lifetimes (6 ns). They responded in a similar manner to peptide binding, by only slight changes in their fluorescence features. In contrast, the fluorescence intensity of the tryptophans in loops II and III decreased markedly, and their fluorescence spectrum was blue-shifted upon peptide binding. Analysis of the tryptophan fluorescence decay of the last mentioned calmodulins supports a model in which the equilibrium between two (Trp-99) or three (Trp-62) states of these tryptophan residues, each characterized by a different lifetime, was altered toward the blue-shifted short lifetime component upon peptide binding. Taken together, these data provide new evidence that both lobes of calmodulin are involved in peptide binding. Both peptides induced similar changes in the fluorescence properties of the tryptophan residues located in the calcium-binding loops, with the exception of calmodulin with Trp-135. For this last mentioned calmodulin, slight differences were observed. Tryptophan in the central helix responded differently to RS20F and RS20CK binding. RS20F binding induced a red-shift in the emission maximum of Trp-81 while RS20CK induced a blue-shift. The quenching rate of Trp-81 by iodide was slightly reduced upon RS20CK binding, while RS20F induced a 2-fold increase. These results provide evidence that the environment of Trp-81 is different in each case and are, therefore, consistent with the hypothesis that the central helix can play a differential role in the recognition of, or response to, CaM-binding structures.  相似文献   

19.
The effects of Ca2+ and substrate analogue binding on the conformational dynamics of porcine pancreas phospholipase A2 (PLA2) in different regions was explored by combining site-directed mutagenesis and time-resolved fluorescence measurements. The single tryptophan residue (Trp-3) of the wild-type protein (W3), in the alpha-helix A, was replaced by a phenylalanine residue (W3F), whereafter Trp was substituted either for leucine-31 (W31), located in the calcium binding loop, or for phenylalanine-94 (W94), located at the "back side" of the enzyme. Furthermore, mutants lacking the 62-66 sequence were constructed with the Trp at position 3 (delta W3) or 31 (delta W31). The total fluorescence intensity decays of Trp in each protein, in the protein-calcium and the protein-calcium-substrate analogue complexes, analyzed by the maximum entropy method (MEM) can be interpreted as distributions of separated lifetime classes. In the case of the W94 mutant, a major short-lived excited-state population (tau approximately 50 ps) is observed, probably deactivated by the interaction with two proximate disulfide bridges via a radiationless process. For the four other mutants, the respective barycenters of the four lifetime classes display comparable values, but the amplitude distributions are different for Trp-3 and Trp-31. The rotational mobility of the Trp residue varies along the peptide chain. Trp-3 experiences only a fast hindered motion. Trp-31 is sensitive to an additional local flexibility that is absent in the N-terminal part of the protein. The largest wobbling angle is observed at position 94. No effect of calcium binding occurs on the lifetime distribution of the Trp-3 and Trp-94 residues. Their mobilities are not affected. In contrast, calcium binding displays a strong influence on the excited-state population distribution of Trp-31. A major population decaying with the longest lifetime is selected in the W31 protein and contributes to approximately 50% of the decay. The local flexibility and the amplitude of motion of Trp-31 is wider in the protein-calcium complex than in the unliganded protein. Binding of the monomeric substrate analogue n-dodecylphosphocholine (C12PN) in the presence of calcium slightly affects the Trp-3 excited-state population distribution and its mobility. Trp-31 is more sensitive to this binding. In particular, a more restricted rotation of the Trp-31 residue and a decrease of the peptide local flexibility as protein-calcium complexes are observed in both the W31 and delta W31 mutants.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Site-directed mutagenesis has been used to generate two mutant Bacillus stearothermophilus lactate dehydrogenases: in one, Trp-150 has been replaced with a tyrosine residue and, in the other, both Trp-150 and -80 are replaced with tyrosines. Both enzymes are fully catalytically active and their affinities for substrates and coenzymes, and thermal stabilities are very similar to those of the native enzyme. Time-resolved fluorescence measurements using a synchrotron source have shown that all three tryptophans in the native enzyme fluoresce. By comparing the mutant and native enzymes it was possible, for the first time, to assign, unambiguously, lifetimes to the individual tryptophans: Trp-203 (7.4 ns), Trp-80 (2.35 ns) and Trp-150 (less than 0.3 ns). Trp-203 is responsible for 75-80% of the steady-state fluorescence emission, Trp-80 for 20%, and Trp-150 for less than 2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号