首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Abstract

The complex formation between elongation factor Tu (EF-Tu), GTP, and valyl-tRNAVal 1A has been investigated in a hepes buffer of “pH” 7.4 and 0.2 M ionic strength using the small-angle neutron scattering method at concentrations of D2O where EF-Tu (42% D2O) and tRNA (71% D2O) are successively matched by the solvents. The results indicate that EF-Tu undergoes a conformational change and contracts as a result of the complex formation, since the radius of gyration decreases by 15% from 2.82 to 2.39 nm. tRNAVal 1A, on the other hand, seems to mainly retain its conformation within the complex, since the radii of gyration for the free (after correction for interparticular scattering) and complexed form are essentially the same. 2.38 and 2.47 nm, respectively.  相似文献   

2.

Purpose

Inflammation may contribute to the pathogenesis of specific cardiovascular diseases, but it is uncertain if mediators released during the inflammatory process will affect the continued efficacy of drugs used to treat clinical signs of the cardiac disease. We investigated the role of the complement 5a receptor 1 (C5aR1/CD88) in the cardiac response to inflammation or atenolol, and the effect of C5aR1 deletion in control of baseline heart rate in an anesthetized mouse model.

Methods

An initial study showed that PMX53, an antagonist of C5aR1 in normal C57BL6/J (wild type, WT) mice reduced heart rate (HR) and appeared to have a protective effect on the heart following induced sepsis. C5aR1 knockout (CD88-/-) mice had a lower HR than wild type mice, even during sham surgery. A model to assess heart rate variability (HRV) in anesthetized mice was developed to assess the effects of inhibiting the β1-adrenoreceptor (β1-AR) in a randomized crossover study design.

Results

HR and LF Norm were constitutively lower and SDNN and HF Norm constitutively higher in the CD88-/- compared with WT mice (P< 0.001 for all outcomes). Administration of atenolol (2.5 mg/kg) reduced the HR and increased HRV (P< 0.05, respectively) in the wild type but not in the CD88-/- mice. There was no shift of the sympathovagal balance post-atenolol in either strains of mice (P> 0.05), except for the reduced LF/HF (Lower frequency/High frequency) ratio (P< 0.05) at 60 min post-atenolol, suggesting increased parasympathetic tone of the heart due to the effect of atenolol administration. The HR of the WT mice were lower post atenolol compared to the CD88-/- mice (P = 0.001) but the HRV of CD88-/- mice were significantly increased (P< 0.05), compared with WT mice.

Conclusion

Knockout of the C5aR1 attenuated the effect of β1-AR in the heart, suggesting an association between the β1-AR and C5aR1, although further investigation is required to determine if this is a direct or causal association.  相似文献   

3.
The low-resolution structure and overall dimensions of the A(3)B(3)CDF complex of the A(1) ATPase from Methanosarcina mazei G?1 in solution is analyzed by synchrotron X-ray small-angle scattering. The radius of gyration and the maximum size of the complex are 5.03 +/- 0.1 and 18.0 +/- 0.1 nm, respectively. The low-resolution shape of the protein determined by two independent ab initio approaches has a knob-and-stalk-like feature. Its headpiece is approximately 9.4 nm long and 9.2 nm wide. The stalk, which is known to connect the headpiece to its membrane-bound A(O) part, is approximately 8.4 nm long. Limited tryptic digestion of the A(3)B(3)CDF complex was used to probe the topology of the smaller subunits (C-F). Trypsin was found to cleave subunit C most rapidly at three sites, Lys(20), Lys(21), and Arg(209), followed by subunit F. In the A(3)B(3)CDF complex, subunit D remained protected from proteolysis.  相似文献   

4.
5.
The A1Ao ATP synthase from archaea represents a class of chimeric ATPases/synthases, whose function and general structural design share characteristics both with vacuolar V1Vo ATPases and with F1Fo ATP synthases. The primary sequences of the two large polypeptides A and B, from the catalytic part, are closely related to the eukaryotic V1Vo ATPases. The chimeric nature of the A1Ao ATP synthase from the archaeon Methanosarcina mazei G?1 was investigated in terms of nucleotide interaction. Here, we demonstrate the ability of the overexpressed A and B subunits to bind ADP and ATP by photoaffinity labeling. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to map the peptide of subunit B involved in nucleotide interaction. Nucleotide affinities in both subunits were determined by fluorescence correlation spectroscopy, indicating a weaker binding of nucleotide analogues to subunit B than to A. In addition, the nucleotide-free crystal structure of subunit B is presented at 1.5 A resolution, providing the first view of the so-called non-catalytic subunit of the A1Ao ATP synthase. Superposition of the A-ATP synthase non-catalytic B subunit and the F-ATP synthase non-catalytic alpha subunit provides new insights into the similarities and differences of these nucleotide-binding ATPase subunits in particular, and into nucleotide binding in general. The arrangement of subunit B within the intact A1Ao ATP synthase is presented.  相似文献   

6.
This study used recombinant A1A2A3 tri-domain proteins to demonstrate that A domain association in von Willebrand factor (VWF) regulates the binding to platelet glycoprotein Ibα (GPIbα). We performed comparative studies between wild type (WT) A1 domain and the R1450E variant that dissociates the tri-domain complex by destabilizing the A1 domain. Using urea denaturation and differential scanning calorimetry, we demonstrated the destabilization of the A1 domain structure concomitantly results in a reduced interaction among the three A domains. This dissociation results in spontaneous binding of R1450E to GPIbα without ristocetin with an apparent KD of 85 ± 34 nm, comparable with that of WT (36 ± 12 nm) with ristocetin. The mutant blocked 100% ristocetin-induced platelet agglutination, whereas WT failed to inhibit. The mutant enhanced shear-induced platelet aggregation at 500 and 5000 s−1 shear rates, reaching 42 and 66%, respectively. Shear-induced platelet aggregation did not exceed 18% in the presence of WT. A1A2A3 variants were added before perfusion over a fibrin(ogen)-coated surface. At 1500 s−1, platelets from blood containing WT adhered <10% of the surface area, whereas the mutant induced platelets to rapidly bind, covering 100% of the fibrin(ogen) surface area. Comparable results were obtained with multimeric VWF when ristocetin (0.5 mg/ml) was added to blood before perfusion. EDTA or antibodies against GPIbα and αIIbβ3 blocked the effect of the mutant and ristocetin on platelet activation/adhesion. Therefore, the termination of A domain association within VWF in solution results in binding to GPIba and platelet activation under high shear stress.  相似文献   

7.
A modified isolation procedure provides a homogeneous A(1)-ATPase from the archaeon Methanosarcina mazei G?1, containing the five subunits in stoichiometric amounts of A(3):B(3):C:D:F. A(1) obtained in this way was characterized by three-dimensional electron microscopy of single particles, resulting in the first three-dimensional reconstruction of an A(1)-ATPase at a resolution of 3.2 nm. The A(1) consists of a headpiece of 10.2 nm in diameter and 10.8 nm in height, formed by the six elongated subunits A(3) and B(3). At the bottom of the A(3)B(3) complex, a stalk of 3.0 nm in length can be seen. The A(3)B(3) domain surrounds a large cavity that extends throughout the length of the A(3)B(3) barrel. A part of the stalk penetrates inside this cavity and is displaced toward an A-B-A triplet. To investigate further the topology of the stalk subunits C-F in A(1), cross-linking has been carried out by using dithiobis[sulfosuccinimidylpropionate] (DSP) and 1-ethyl-3-(dimethylaminopropyl)-carbodiimide (EDC). In experiments where DSP was added the cross-linked products B-F, A(x)-D, A-B-D, and A(x)-B(x)-D were formed. Subunits B-F, A-D, A-B-D, and A-B-C-D could be cross-linked by EDC. The subunit-subunit interaction in the presence of DSP was also studied as a function of nucleotide binding, demonstrating movements of subunits C, D, and F during ATP cleavage. Finally, the three-dimensional organization of this A(1) complex is discussed in terms of the relationship to the F(1)- and V(1)-ATPases at a resolution of 3.2 nm.  相似文献   

8.
《Autophagy》2013,9(1):100-112
Autophagy is one of the main mechanisms in the pathophysiology of neurodegenerative disease. The accumulation of autophagic vacuoles (AVs) in affected neurons is responsible for amyloid-β (Aβ) production. Previously, we reported that SUMO1 (small ubiquitin-like modifier 1) increases Aβ levels. In this study, we explored the mechanisms underlying this. We investigated whether AV formation is necessary for Aβ production by SUMO1. Overexpression of SUMO1 increased autophagic activation, inducing the formation of LC3-II-positive AVs in neuroglioma H4 cells. Consistently, autophagic activation was decreased by the depletion of SUMO1 with small hairpin RNA (shRNA) in H4 cells. The SUMO1-mediated increase in Aβ was reduced by the autophagy inhibitors (3-methyladenine or wortmannin) or genetic inhibitors (siRNA targeting ATG5, ATG7, ATG12, or HIF1A), respectively. Accumulation of SUMO1, ATG12, and LC3 was seen in amyloid precursor protein transgenic mice. Our results suggest that SUMO1 accelerates the accumulation of AVs and promotes Aβ production, which is a key mechanism for understanding the AV-mediated pathophysiology of Alzheimer disease.  相似文献   

9.
AimsPrevious studies suggested that p38 MAPK activation during sustained myocardial ischaemia and reperfusion was harmful. We hypothesize that attenuation of p38MAPK activity via dephosphorylation by the dual-specificity phosphatase MKP-1 should be protective against ischaemia/reperfusion injury. Since the glucocorticoid, dexamethasone, induces the expression of MKP-1, the aim of this study was to determine whether upregulation of this phosphatase by dexamethasone protects the heart against ischaemia/reperfusion injury.Main methodsMale Wistar rats were treated with dexamethasone (3 mg/kg/day ip) for 10 days, before removal of the hearts for Western blot (ip Dex ? P) or perfusion in the working mode (ip Dex + P). Hearts were subjected to 20 min global or 35 min regional ischaemia (36.5 °C) and 30 or 120 min reperfusion. In a separate series, dexamethasone (1 µM) was added to the perfusate for 10 min (Pre + Dex) before or after (Rep + Dex) ischaemia.Key findingsDexamethasone, administered intraperitoneally or added directly to the perfusate, significantly improved post-ischaemic functional recovery and reduced infarct size compared to untreated controls (p < 0.05). These were associated with enhanced up-regulation of MKP-1 protein expression (arbitrary units (mean ± SD): Untreated: 1; ip Dex ? P: 2.59 ± 0.22; ip Dex + P: 1.51 ± 0.22; Pre + Dex: 4.11 ± 0.73, Rep + 15′Dex: 1.51 ± 0.14; untreated vs. all groups, p < 0.05) and attenuation of p38 MAPK activation (p < 0.05) in all dexamethasone-treated groups, except for Rep + 10′Dex. ERK and PKB/Akt activation were unchanged.SignificanceDexamethasone-induced cardioprotection was associated with upregulation of the phosphatase MKP-1 and inactivation of pro-apoptotic p38 MAPK.  相似文献   

10.
Autophagy is one of the main mechanisms in the pathophysiology of neurodegenerative disease. The accumulation of autophagic vacuoles (AVs) in affected neurons is responsible for amyloid-β (Aβ) production. Previously, we reported that SUMO1 (small ubiquitin-like modifier 1) increases Aβ levels. In this study, we explored the mechanisms underlying this. We investigated whether AV formation is necessary for Aβ production by SUMO1. Overexpression of SUMO1 increased autophagic activation, inducing the formation of LC3-II-positive AVs in neuroglioma H4 cells. Consistently, autophagic activation was decreased by the depletion of SUMO1 with small hairpin RNA (shRNA) in H4 cells. The SUMO1-mediated increase in Aβ was reduced by the autophagy inhibitors (3-methyladenine or wortmannin) or genetic inhibitors (siRNA targeting ATG5, ATG7, ATG12, or HIF1A), respectively. Accumulation of SUMO1, ATG12, and LC3 was seen in amyloid precursor protein transgenic mice. Our results suggest that SUMO1 accelerates the accumulation of AVs and promotes Aβ production, which is a key mechanism for understanding the AV-mediated pathophysiology of Alzheimer disease.  相似文献   

11.
12.
Recruitment of Mad1–Mad2 complexes to unattached kinetochores is a central event in spindle checkpoint signaling. Despite its importance, the mechanism that recruits Mad1–Mad2 to kinetochores is unclear. In this paper, we show that MAD-1 interacts with BUB-1 in Caenorhabditis elegans. Mutagenesis identified specific residues in a segment of the MAD-1 coiled coil that mediate the BUB-1 interaction. In addition to unattached kinetochores, MAD-1 localized between separating meiotic chromosomes and to the nuclear periphery. Mutations in the MAD-1 coiled coil that selectively disrupt interaction with BUB-1 eliminated MAD-1 localization to unattached kinetochores and between meiotic chromosomes, both of which require BUB-1, and abrogated checkpoint signaling. The identified MAD-1 coiled-coil segment interacted with a C-terminal region of BUB-1 that contains its kinase domain, and mutations in this region prevented MAD-1 kinetochore targeting independently of kinase activity. These results delineate an interaction between BUB-1 and MAD-1 that targets MAD-1–MAD-2 complexes to kinetochores and is essential for spindle checkpoint signaling.  相似文献   

13.
14.
Crystallins are very abundant structural proteins of the lens and are also expressed in other tissues. We have previously reported a spontaneous mutation in the rat βA3/A1-crystallin gene, termed Nuc1, which has a novel, complex, ocular phenotype. The current study was undertaken to compare the expression pattern of this gene during eye development in wild type and Nuc1 rats by in situ hybridization (ISH) and immunohistochemistry (IHC). βA3/A1-crystallin expression was first detected in the eyes of both wild type and Nuc1 rats at embryonic (E) day 12.5 in the posterior portion of the lens vesicle, and remained limited to the lens fibers throughout fetal life. After birth, βA3/A1-crystallin expression was also detected in the neural retina (specifically in the astrocytes and ganglion cells) and in the retinal pigmented epithelium (RPE). This suggested that βA3/A1-crystallin is not only a structural protein of the lens, but has cellular function(s) in other ocular tissues. In summary, expression of βA3/A1-crystallin is controlled differentially in various eye tissues with lens being the site of greatest expression. Similar staining patterns, detected by ISH and IHC, in wild type and Nuc1 animals suggest that functional differences in the protein, rather than changes in mRNA/protein level of expression, likely account for developmental abnormalities in Nuc1.  相似文献   

15.
16.
Genetic variation of apoA1/C3/A4 is associated with hyperlipidaemia and coronary heart disease. We report the polymerase chain reaction (PCR) conditions for determining three polymorphic sites in the 5 flanking region of apoA1 using DNA prepared from small aliquots of whole blood. These polymorphisms identify six haplotypes that will be of value in genetic studies.  相似文献   

17.
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition.  相似文献   

18.
About 300 “species” names of Athyrium from China were published. They are preliminarily treated as 117 species with a number of varieties and hybrids. The complete enumeration will be reported in four parts. The present paper is part one, a key to the species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号