首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two physiologically distinct types of muscles, the direct and indirect flight muscles, develop from myoblasts associated with the Drosophila wing disc. We show that the direct flight muscles are specified by the expression of Apterous, a Lim homeodomain protein, in groups of myoblasts. This suggests a mechanism of cell-fate specification by labelling groups of fusion competent myoblasts, in contrast to mechanisms in the embryo, where muscle cell fate is specified by single founder myoblasts. In addition, Apterous is expressed in the developing adult epidermal muscle attachment sites. Here, it functions to regulate the expression of stripe, a gene that is an important element of early patterning of muscle fibres, from the epidermis. Our results, which may have broad implications, suggest novel mechanisms of muscle patterning in the adult, in contrast to embryonic myogenesis.  相似文献   

3.
4.
The emplacement of the first imaginal myoblasts along the larval muscles which are precursors of the dorsal longitudinal flight muscles, has been studied in Chironomus (Diptera, Nematocera), by light and electron microscopy. At the beginning of larval life there are no imaginal myoblasts stored along these muscles. These cells are discerned only at the beginning of the last larval instar. They first appear in the median region of the muscles near the neuromuscular junction. Prior to this, however, there are cells possessing the same cytological characteristics as the imaginal myoblasts inside the sheath of the motor nerves that supply the muscles. These observations suggest that myoblasts could arrive by the nerve sheath. The presence of a thick, continuous basal lamina around the larval muscles seems to exclude all other possibility of access to these muscles. The extension of this hypothesis to the Cyclorrhaphan Diptera is discussed.  相似文献   

5.
During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.  相似文献   

6.
7.
The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.  相似文献   

8.
Motoneurons directly influence the differentiation of muscle fibers, regulating features such as muscle fiber type and receptor development. Less well understood is whether motoneurons direct earlier events, such as the patterning of the musculature. In Drosophila, the denervation of indirect flight muscles results in a diminished myoblast population and smaller or missing muscle fibers. We have examined whether the neuron-dependent control of myoblast number is due to regulation of cell division, motoneuron-dependent apoptosis, or nerve-dependent localization and migration of myoblasts. We found that denervation resulted in a reduced rate of cell division, as revealed by BrDU incorporation. There was no change in the frequency of apoptotic myoblasts following denervation. Using time lapse imaging of GFP-expressing myoblasts in vivo in pupae, we observed that despite denervation, the migration and localization of myoblasts remained unchanged. In addition to reducing myoblast proliferation, denervation also altered the segregation of myoblasts into the de novo arising dorso-ventral muscles (DVMs). To address this effect on muscle patterning, we examined the expression of the founder-cell marker Dumbfounded/Kirre (Duf) in imaginal pioneer cells. We show that there is a strong correspondence between cells that express Dumbfounded/Kirre and the number of DVM fibers, consistent with a role for these cells in establishing adult muscles. In the absence of innervation the Duf-positive cells are no longer detected, and muscle patterning is severely disrupted. Our results support a model where specialized founder cells prefigure the adult muscle fibers under the control of the nervous system.  相似文献   

9.
During insect myogenesis, myoblasts are organized into a pre-pattern by specialized organizer cells. In the Drosophila embryo, these cells have been termed founder cells and play important roles in specifying muscle identity and in serving as targets for myoblast fusion. A group of adult muscles, the dorsal longitudinal (flight) muscles, DLMs, is patterned by persistent larval scaffolds; the second set, the dorso-ventral muscles, DVMs is patterned by mono-nucleate founder cells (FCs) that are much larger than the surrounding myoblasts. Both types of organizer cells express Dumbfounded, which is known to regulate fusion during embryonic myogenesis. The role of DVM founder cells as well as the DLM scaffolds was tested in genetic ablation studies using the UAS/Gal4 system of targeted transgene expression. In both cases, removal of organizer cells prior to fusion, causes formation of supernumerary fibers, suggesting that cells in the myoblast pool have the capacity to initiate fiber formation, which is normally inhibited by the organizers. In addition to the large DVM FCs, some (smaller) cells in the myoblast pool also express Dumbfounded. We propose that these cells are responsible for seeding supernumerary fibers, when DVM FCs are eliminated prior to fusion. When these cells are also eliminated, myogenesis fails to occur. In the second set of studies, targeted expression of constitutively active RasV12 also resulted in the appearance of supernumerary fibers. In this case, the original DVM FCs are present, suggesting alterations in cell fate. Taken together, these data suggest that DVM myoblasts are able to respond to cues other than the original founder cell, to initiate fusion and fiber formation. Thus, the role of the large DVM founder cells is to generate the correct number of fibers, but they are not required for fiber formation itself. We also present evidence that the DVM FCs may arise from the leg imaginal disc.  相似文献   

10.
The differentiation of the indirect flight muscles was studied in the various pupal stages of Drosophila. Fibrillar material originates in the young basophilic myoblasts in the form of short myofilamants distributed irregularly near the cell membranes. The filaments later become grouped into bundles (fibrils). Certain "Z bodies" appear to be important during this process. The "Z bodies" may possibly be centriolar derivatives and are the precursors of the Z bands. The first formed fibrils (having about 30 thick myofilaments) are already divided into sarcomeres by Z bands. These sarcomeres, however, seem to be shorter than those of the adult fibrils.The H band differentiates in fibrils having about 40 thick myofilaments; the fibrils constrict in the middle of each sarcomere during this process. The individual myofibrils increase from about 0.3 µ to 1.5 µ in diameter during development, apparently by addition of new filaments on the periphery of the fibrils. The ribosomes seem to be the only cytoplasmic inclusions which are closely associated with these growing myofibrils. Disintegration of the plasma membranes limiting individual myoblasts was commonly seen during development of flight muscles, supporting the view that the multinuclear condition of the fibers of these muscles is due to fusion of myoblasts.  相似文献   

11.
12.
13.
The origin and development of the dorso-ventral flight muscles (DVM) was studied by light and electron microscopy in Chironomus (Diptera; Nematocera). Chironomus was chosen because unlike Drosophila, its flight muscles develop during the last larval instar, before the lytic process of metamorphosis. Ten fibrillar DVM were shown to develop from a larval muscle associated with myoblasts. This muscle is connected to the imaginal leg discso that its cavity communicates with the adepithelial cells present in the disc; but no migration of myoblasts seems to take place from the imaginal leg disc towards the larval muscle or vice versa. At the beginning of the last larval instar, the myoblasts were always present together with the nerves in the larval muscle. In addition, large larval muscle cells incorporated to the imaginal discs were observed to border on the area occupied by adepithelial cells, and are probably involved in the formation of 4 other fibrillar DVM with adepithelial cells. Three factors seem to determine the number of DVM fibres: the initial number of larval fibres in the Anlage, the fusions of myoblasts with these larval fibres and the number of motor axons in the Anlage. The extrapolation of these observations to Drosophila, a higher dipteran, is discussed.  相似文献   

14.
15.
Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved.  相似文献   

16.
The formation and development of the dorsal longitudinal flight muscles of the butterfly Pieris brassicae L have been studied by electron and light microscopy. These imaginal muscles arise from two symmetrical pairs of mesothoracic larval muscles, which are morphologically indistinguishable from the other wall muscles at the beginning of the 5th larval instar. However, 2 days before the end of this instar an accumulation of myoblasts is observed at the median region of these muscle fibres. The muscle fibres are penetrated by the myoblasts and broken into fragments. Progressive dedifferentiation of the larval fibrillar material in each of the muscle fragments is observed during the first days of the pupal development. The myoblasts within the basal lamina of the original larval muscle fibres remain associated with the muscle fragments. Myoblasts then fuse with the larval muscle fragments, which simultaneously fuse with each other. This results in the formation of rudimentary imaginal muscle fibres. The development of these fibres, particularly myofibrillogenesis, is studied until the emergence of the imago.  相似文献   

17.
The origin and the development of the tubular tergo-trochanteral muscle (TTD) was studied by light and electron microscopy in Chironomus (Diptera: Nematocera). Unlike the flight muscles, the TTD was found to develop from myoblasts located around a larval axon, without contribution from a larval muscle. The myoblasts fuse together to form myotubes. Innervation of the TTD arises from the larval axon. The myotubes send out sarcoplasmic extensions towards the axon branches issued from the larval axon. The first differentiated synapses are described. The TTD begins to grow later than the flight muscles. The implications of this developmental lag are discussed.  相似文献   

18.
We previously documented a greater than 100-fold rostrocaudal gradient of chloramphenicol acetyltransferase (CAT) expression in the muscles of adult mice that bear a myosin light chain-CAT transgene: successively more caudal muscles express successively higher levels of CAT. Here we studied the development and maintenance of this positional information in vitro. CAT levels reflect the rostrocaudal positions of the muscles from which the cells are derived in cultures established from adult muscles, in clones derived from individual adult myogenic (satellite) cells, in cultures prepared from embryonic myoblasts, and in cell lines derived by retrovirus-mediated transfer of an oncogene to satellite cells. Our results suggest that myoblasts bear a positional memory that is established in embryos, retained in adults, cell autonomous, heritable, stable to transformation, and accessible to study in clonal cell lines.  相似文献   

19.
In Rhodnius prolixus, after the imaginal molt, the intersegmental muscles completely lose their contractile material, and are transformed into thin strands containing nuclei. It is possible that these muscular strands are finally pinched off as mononucleated myoblasts. These residual muscles apparently maintain a normal innervation--which persists to the end of the imago's life. Moreover, they appear to show some aspects of synthetic activity after the adult has been fed: in this case, there is a growth of the 'rough endoplasmic reticulum' and elaboration of specialized fibrous inclusions.  相似文献   

20.
In a muscle-specific flight simulator (simulator driven by muscle action potentials) locusts (Locusta migratoria) show motor learning by which steering performance of the closed-loop muscles is improved. The role of proprioceptive feedback for this motor learning has been studied. Closed-loop muscles were cut in order to disable proprioceptive feedback of their contractions. Since there are no proprioceptors within the muscles, this is a muscle-specific deafferentation. Cut muscles are still activated during flight and their action potentials can be used for controlling the flight simulator. With cut muscles in closed-loop, steering is less reliable as can be seen from the frequent oscillations of the yaw angle. However, periods of stable flight indicate that deafferented muscles are still, in principle, functional for steering. Open-loop yaw stimuli reveal that steering reactions in cut muscles are weaker and have a longer delay than intact muscles. This is responsible for the oscillations observed in closed-loop flight. Intact muscles can take over from cut muscles in order to re-establish stable closed-loop flight. This shows that proprioceptive mechanisms for learning are muscle specific. A hypothetical scheme is presented to explain the role of proprioception for motor learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号