首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RGS2, a Regulators of G-protein Signaling family member, regulates signaling activities of G-proteins, and RGS2 itself is controlled in part by regulation of its expression. This investigation extended previous studies of the regulation of RGS2 expression by examining the effects of stress, differentiation, and signaling activities on RGS2 mRNA level in human neuroblastoma SH-SY5Y cells. Cell stress induced by heat shock rapidly and transiently increased RGS2 mRNA levels, whereas differentiation to a neuronal phenotype reduced basal RGS2 mRNA levels by 50%. RGS2 mRNA levels were increased in differentiated cells by heat shock, carbachol, and activation of protein kinase C. After transient transfection of GFP-tagged RGS2, a predominant nuclear localization was observed by confocal microscopy. Thus, RGS2 expression is regulated by stress and differentiation, as well as by second messenger signaling, and transfected GFP-RGS2 is predominantly nuclear.  相似文献   

2.
RGS2: a multifunctional regulator of G-protein signaling   总被引:5,自引:0,他引:5  
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic rate at which certain heterotrimeric G-protein alpha-subunits hydrolyze GTP to GDP, thereby limiting the duration that alpha-subunits activate downstream effectors. This activity defines them as GTPase activating proteins (GAPs). As do other RGS proteins RGS2 possesses a 120 amino acid RGS domain, which mediates its GAP activity. In addition, RGS2 shares an N-terminal membrane targeting domain with RGS4 and RGS16. Found in many cell types, RGS2 expression is highly regulated. Functionally, RGS2 blocks Gq alpha-mediated signaling, a finding consistent with its potent Gq alpha GAP activity. Surprisingly, RGS2 inhibits Gs signaling to certain adenylyl cyclases. Like other RGS proteins, RGS2 lacks Gs alpha GAP activity, however it directly inhibits the activity of several adenylyl cyclase isoforms. Targeted mutation of RGS2 in mice impairs anti-viral immunity, increases anxiety levels, and alters synaptic development in hippocampal CA1 neurons. RGS2 has emerged as a multifunctional RGS protein that regulates multiple G-protein linked signaling pathways.  相似文献   

3.
RGS2, a member of the Regulators of G-protein Signaling family, modulates the activity of G-proteins coupled to the phosphoinositide signal transduction system, but little is known about what regulates RGS2. In human neuroblastoma SH-SY5Y cells stimulation of muscarinic receptors by carbachol activates phosphoinositide signaling and also caused a rapid, large, and long lasting increase in RGS2 mRNA levels. Direct activation of protein kinase C also rapidly increased RGS2 mRNA levels. Inhibition of protein kinase C with Ro31-8220, GF109203x, or Go6976 or down-regulation of protein kinase C inhibited increases in RGS2 mRNA levels induced by carbachol or by the activation of protein kinase C. Blockade of calcium signaling did not alter carbachol-induced increases in RGS2 mRNA levels. Neither activation of epidermal growth factor receptors nor stimulation of cyclic AMP production with forskolin increased RGS2 mRNA levels. Pretreatment with actinomycin D blocked increases in RGS2 mRNA levels but caused a surprisingly small, although statistically significant, partial blockade of protein kinase C-mediated feedback inhibition of carbachol-induced phosphoinositide hydrolysis. Thus, RGS2 mRNA levels are increased by activation of muscarinic receptors coupled to the phosphoinositide signal transduction system through a protein kinase C-dependent mechanism. This action may contribute to negative feedback control of this signaling cascade, but because the small contribution to negative feedback contrasts with the large and prolonged elevations in RGS2 mRNA levels, we speculate that its primary role may be in modulating other signaling components.  相似文献   

4.
Regulator of G-protein signaling (RGS) proteins play an important role in G-protein coupled receptor (GPCR) signaling and the activity of some GPCRs is modulated via RGS protein levels during stress response. The aim of this study was to investigate changes in RGS protein mRNA expressions in the mouse brain after 2h restraint stress. The mRNA level of 19 RGS proteins was analyzed using real-time PCR in six brain regions, which included the prefrontal cortex, amygdala, hippocampus, hypothalamus, striatum, and pituitary gland, from control and stressed mouse. We found that the level of mRNA of each RGS varied according to brain region and that two to eight RGS proteins exhibited changes in mRNA levels in each brain region by restraint stress. It was also revealed that RGS4 protein amount was consistent with mRNA level, indicating RGS4 protein may have regulatory roles in the acute stress response.  相似文献   

5.
Mechanical stress is thought to regulate the expression of genes in the periodontal ligament (PDL) cells. Using a microarray approach, we recently identified a regulator of G-protein signaling 2 (RGS2) as an up-regulated gene in the PDL cells under compressive force. The RGS protein family is known to turn off G-protein signaling. G-protein signaling involves the production of cAMP, which is thought to be one of the biological mediators in response to mechanical stress. Here, we investigated the role of RGS2 in the PDL cells under mechanical stress. PDL cells derived from the ligament tissues of human premolar teeth were cultured in collagen gels and subjected to static compressive force. Compressive force application time-dependently enhanced RGS2 expression and intracellular cAMP levels. To examine the interrelationship between RGS2 and cAMP, the PDL cells were treated with 2',5'-dideoxyadenosine (DDA), an inhibitor of adenyl cyclase, or antisense S-oligonucleotide (S-ODN) to RGS2 under compressive force. DDA dose-dependently inhibited RGS2 stimulated by compressive force. Blockage of RGS2 by antisense S-ODN elevated the cAMP levels compared with controls. These results indicate that cAMP stimulates RGS2 expression, which in turn leads to a decrease in the cAMP production by inactivating the G-protein signaling in the mechanically stressed PDL cells.  相似文献   

6.
Lin YR  Kim K  Yang Y  Ivessa A  Sadoshima J  Park Y 《Aging cell》2011,10(3):438-447
Regulator of G-protein signaling (RGS) proteins contribute to G-protein signaling pathways as activators or repressors with GTPase-activating protein (GAP) activity. To characterize whether regulation of RGS proteins influences longevity in several species, we measured stress responses and lifespan of RGS-overexpressing and RGS-lacking mutants. Reduced expression of Loco, a RGS protein of Drosophila melanogaster, resulted in a longer lifespan for both male and female flies, also exhibiting stronger resistance to three different stressors (starvation, oxidation, and heat) and higher manganese-containing superoxide dismutase (MnSOD) activity. In addition, this reduction in Loco expression increased fat content and diminished cAMP levels. In contrast, overexpression of both genomic and cDNA loco gene significantly shortened the lifespan with weaker stress resistance and lower fat content. Deletion analysis of the Loco demonstrated that its RGS domain is required for the regulation of longevity. Consistently, when expression of RGS14, mammalian homologue of Loco, was reduced in rat fibroblast cells, the resistance to oxidative stress increased with higher MnSOD expression. The changes of yeast Rgs2 expression, which shares a conserved RGS domain with the fly Loco protein, also altered lifespan and stress resistance in Saccharomyces cerevisiae. Here, we provide the first evidence that RGS proteins with GAP activity affect both stress resistance and longevity in several species.  相似文献   

7.
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.  相似文献   

8.
G protein-coupled receptor (GPCR) signaling cascades may be key substrates for the antidepressant effects of chronic electroconvulsive seizures (ECS). To better understand changes in these signaling pathways, alterations in levels of mRNA's encoding regulators of G protein signaling (RGS) protein subtypes-2, -4, -7, -8 and -10 were evaluated in rat brain using northern blotting and in situ hybridization. In prefrontal cortex, RGS2 mRNA levels were increased several-fold 2 h following an acute ECS. Increases in RGS8 mRNA were of lesser magnitude (30%), and no changes were evident for the other RGS subtypes. At 24 h following a chronic ECS regimen, RGS4, -7, and -10 mRNA levels were reduced by 20-30%; only RGS10 was significantly reduced 24 h after acute ECS. Levels of RGS2 mRNA were unchanged 24 h following either acute or chronic ECS. In hippocampus, RGS2 mRNA levels were markedly increased 2 h following acute ECS. More modest increases were seen for RGS4 mRNA expression, whereas levels of the other RGS subtypes were unaltered. At 24 h following chronic ECS, RGS7, -8 and -10 mRNA levels were decreased in the granule cell layer, and RGS7 and -8 mRNA levels were decreased in the pyramidal cell layers. Only RGS8 and -10 mRNA levels were significantly reduced in hippocampus 24 h following an acute ECS. Paralleling neocortex, RGS2 mRNA content was unchanged in hippocampus 24 h following either acute or chronic ECS. In ventromedial hypothalamus, RGS4 mRNA content was increased 24 h following chronic ECS, whereas RGS7 mRNA levels were only increased 24 h following an acute ECS. The increased RGS4 mRNA levels in hypothalamus were significant by 2 h following an acute ECS. These studies demonstrate subtype-, time-, and region-specific regulation of RGS proteins by ECS, adaptations that may contribute to the antidepressant effects of this treatment.  相似文献   

9.
Regulators of G-protein Signaling (RGS) proteins attenuate signaling activities of G proteins, and modulation of expression appears to be a primary mechanism for regulating RGS proteins. In human astrocytoma 1321N1 cells RGS2 expression was increased by activation of muscarinic receptors coupled to phosphoinositide signaling with carbachol, or by increased cyclic AMP production, demonstrating that both signaling systems can increase the expression of a RGS family member in a single cell type. Carbachol-stimulated increases in endogenous RGS2 protein levels appeared by immunocytochemical analysis to be largely confined to the nucleus, and this localization was confirmed by Western blot analysis which showed increased nuclear, but not cytosolic, RGS2 after carbachol treatment. Additionally, transiently expressed green fluorescent protein (GFP)-tagged, 6xHis-tagged, or unmodified RGS2 resulted in a predominant nuclear localization, as well as a distinct accumulation of RGS2 along the plasma membrane. The intranuclear localization of GFP-RGS2 was confirmed with confocal microscopy. Thus, RGS2 expression is rapidly and transiently increased by phosphoinositide signaling and by cyclic AMP, and endogenous and transfected RGS2 is largely, although not entirely, localized in the nucleus.  相似文献   

10.
11.
Previous investigations had suggested that signaling from the overexpressed beta(2) adrenergic in the heart of transgenic TG4 mice was dampened in the atria. Using an RT-PCR based strategy, we have identified Regulator of G-protein Signaling 5 (RGS5) as being up-regulated in the atria of TG4 mice. Northern blot analysis demonstrated that RGS5 levels were 3 fold higher in the atria of TG4 mice. Western blot analysis of a panel of rat tissues demonstrated that basal expression of RGS5 protein was confined to the heart and skeletal muscle. Furthermore, RGS5 protein was detected in skeletal muscle C2C12 and cardiomyocyte HL-1 cultured cell lines. As observed for RGS5 mRNA levels in TG4 mice, RGS5 protein levels were increased in the atria of rats that were administered the beta adrenergic agonist isoproterenol during a 14 day period. Taken together, these results indicate that RGS5 is a housekeeping RGS in the heart and in skeletal muscle while its beta adrenergic-mediated induction in the atrium suggests that it also has a highly specialized function.  相似文献   

12.
Wang J  Xie Y  Wolff DW  Abel PW  Tu Y 《FEBS letters》2010,584(22):4570-4574
Regulator of G-protein signaling 4 (RGS4), an intracellular modulator of G-protein coupled receptor (GPCR)-mediated signaling, is regulated by multiple processes including palmitoylation and proteasome degradation. We found that co-expression of DHHC acyltransferases (DHHC3 or DHHC7), but not their acyltransferase-inactive mutants, increased expression levels of RGS4 but not its Cys2 to Ser mutant (RGS4C2S). DHHC3 interacts with and palmitoylates RGS4 but not RGS4C2S in vivo. Palmitoylation prolongs the half-life of RGS4 by over 8-fold and palmitoylated RGS4 blocked α1A-adrenergic receptor-stimulated intracellular Ca2+ mobilization. Together, our findings revealed that DHHC proteins could regulate GPCR-mediated signaling by increasing RGS4 stability.

Structured summary

MINT-8049215: Rgs4 (uniprotkb:P49799) physically interacts (MI:0915) with DHHC3 (uniprotkb:Q8R173) by anti-tag coimmunoprecipitation (MI:0007)  相似文献   

13.
The regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling. RGS8 belongs to B/R4 subfamily of RGS proteins and is specifically expressed in Purkinje cells of adult cerebellum. Here, to examine the expression of RGS8 mRNA in developing cerebellum, we performed in situ hybridization. Apparent signals for expression of RGS8 mRNA were first detected on day 9 after birth, then RGS8 mRNA expression in Purkinje cells increased up to day 21, and its levels decreased to some extent in adult Purkinje cells. We also studied the expression of RGS7, which is expressed in Golgi cells in the granule cell layer of adult cerebellum. The expression of RGS7 mRNA was recognized in 7 day neonatal cerebellum. When examined with anti-RGS8 antibody, the RGS8 protein was already excluded from nucleus on day 9, and was distributed in cell body and dendrites in differentiating Purkinje cells of 14 day neonates.  相似文献   

14.
Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.  相似文献   

15.
Hu Y  Xing J  Chen L  Guo X  Du Y  Zhao C  Zhu Y  Lin M  Zhou Z  Sha J 《Biology of reproduction》2008,79(6):1021-1029
The heterotrimeric G-protein pathway controls numerous cellular processes, including proliferation, differentiation, migration, membrane trafficking, and embryonic development. Regulator of G-protein signaling (RGS) proteins are known to function at the G-protein level. Here, the functional role of a novel RGS protein, regulator of G-protein signaling 22 (RGS22), in the testis was investigated at the mRNA and protein levels. Our results demonstrate that RGS22 is a testis-specific gene. However, significantly decreased expression of RGS22 was found in the testes of patients with azoospermia. RGS22 was translated or posttranslationally modified into multiple proteins of different molecular sizes in prokaryocytes as well as in the testes. Its protein (NP_056483) was localized in spermatogenic cells and Leydig cells and could interact with guanine nucleotide binding protein, alpha 12, 13, and 11 (GNA12, GNA13, and GNA11). Fragmental GFP-fusion protein tracking revealed that the N-terminal of RGS22 was localized in the nucleus. RGS22 and GNA13 were localized in the nucleus from the elongated spermatid stage onward. Indirect immunofluorescence studies revealed defective expression of GNA13 in macrocephalic and global nucleus spermatozoa. These findings suggest that their functions in this subcellular compartment are likely related to the postmeiotic developmental phase, spermiogenesis. RGS22 may also play a role in GNA13 translocation from the cytoplasm to the nucleus during spermiogenesis.  相似文献   

16.
Oxidative stress induces apoptosis in a variety of cell types by as yet unclear signaling mechanisms. The Daxx protein is reportedly involved in apoptosis through its interactions with Fas, transforming growth factor-beta receptor, and promyelocytic leukemia protein (PML). Here, we explored the possible roles of Daxx in oxidative stress-induced apoptosis. We found that both the mRNA and protein levels of Daxx markedly increased when cells underwent apoptosis after H2O2 treatment. Pretreatment with the cell-permeable antioxidant, N-acetyl cysteine, prevented cells from H2O2-induced Daxx upregulation and subsequent apoptosis, indicating that the endogenous oxidant regulated Daxx expression. Furthermore, suppression of endogenous Daxx expression by antisense oligonucleotide technology inhibited oxidative stress-induced apoptosis in HeLa cells. Taken together, these results suggest that Daxx acts as an intermediary messenger of pro-apoptotic signals triggered by oxidative stress.  相似文献   

17.
The regulator of G protein signaling 2 (RGS2) is a potent negative regulator of Gq protein signals including the angiotensin II (AngII)/AngII receptor signal, which plays a critical role in the progression of fibrosis. However, the role of RGS2 on the progression of kidney fibrosis has not been assessed. Here, we investigated the role of RGS2 in kidney fibrosis induced by unilateral ureteral obstruction (UUO) in mice. UUO resulted in increased expression of RGS2 mRNA and protein in the kidney along with increases of AngII and its type 1 receptor (AT1R) signaling and fibrosis. Furthermore, UUO increased the levels of F4/80, Ly6G, myeloperoxidase, and CXCR4 in the kidneys. RGS2 deficiency significantly enhanced these changes in the kidney. RGS2 deletion in the bone marrow-derived cells by transplanting the bone marrow of RGS2 knock-out mice into wild type mice enhanced UUO-induced kidney fibrosis. Overexpression of RGS2 in HEK293 cells, a human embryonic kidney cell line, and RAW264.7 cells, a monocyte/macrophage line, inhibited the AngII-induced activation of ERK and increase of CXCR4 expression. These findings provide the first evidence that RGS2 negatively regulates the progression of kidney fibrosis following UUO, likely by suppressing fibrogenic and inflammatory responses through the inhibition of AngII/AT1R signaling.  相似文献   

18.
Salim S  Asghar M  Taneja M  Hovatta I  Wu YL  Saha K  Sarraj N  Hite B 《FEBS letters》2011,585(9):1375-1381
Regulator of G-protein signaling protein (RGS)-2 is a modulator of anxiety and dysregulation of oxidative stress is implicated in anxiety. Also, RGS2 expression is reported to be induced by oxidative stress. Thus, if oxidative stress induces RGS2 expression and lack of RGS2 causes anxiety, then mechanisms that link RGS2 and oxidative stress potentially critical to anxiety must be revealed. Our study is the first to suggest role of RGS2 in regulation of enzymes involved in antioxidant defense namely glyoxalase-1 and glutathione reductase-1 via activation of p38 MAPK and PKC pathways in an Sp-1 dependent manner.  相似文献   

19.
Regulators of G-protein signaling (RGS) proteins modulate signaling through heterotrimeric G-proteins. They act to enhance the intrinsic GTPase activity of the Galpha subunit but paradoxically have also been shown to enhance receptor-stimulated activation. To study this paradox, we used a G-protein gated K+ channel to report the dynamics of the G-protein cycle and fluorescence resonance energy transfer techniques with cyan and yellow fluorescent protein-tagged proteins to report physical interaction. Our data show that the acceleration of the activation kinetics is dissociated from deactivation kinetics and dependent on receptor and RGS type, G-protein isoform, and RGS expression levels. By using fluorescently tagged proteins, fluorescence resonance energy transfer microscopy showed a stable physical interaction between the G-protein alpha subunit and RGS (RGS8 and RGS7) that is independent of the functional state of the G-protein. RGS8 does not directly interact with G-protein-coupled receptors. Our data show participation of the RGS in the ternary complex between agonist-receptor and G-protein to form a "quaternary complex." Thus we propose a novel model for the action of RGS proteins in the G-protein cycle in which the RGS protein appears to enhance the "kinetic efficacy" of the ternary complex, by direct association with the G-protein alpha subunit.  相似文献   

20.
Multiple events are associated with the regulation of signaling by the M2 muscarinic cholinergic receptors (mAChRs). Desensitization of the attenuation of adenylyl cyclase by the M2 mAChRs appears to involve agonist-dependent phosphorylation of M2 mAChRs by G-protein coupled receptor kinases (GRKs) that phosphorylate the receptors in a serine/threonine rich motif in the 3rd intracellular domain of the receptors. Mutation of residues 307-311 from TVSTS to AVAAA in this domain of the human M2 mAChR results in a loss of receptor/G-protein uncoupling and a loss of arrestin binding. Agonist-induced sequestration of receptors away from their normal membrane environment is also regulated by agonist-induced phosphorylation of the M2 mAChRs on the 3rd intracellular domain, but in HEK cells, the predominant pathway of internalization is not regulated by GRKs or arrestins. This pathway of internalization is not inhibited by a dominant negative dynamin, and does not appear to involve either clathrin coated pits or caveolae. The signaling of the M2 mAChR to G-protein regulated inwardly rectifying K channels (GIRKs) can be modified by RGS proteins. In HEK cells, expression of RGS proteins leads to a constitutive activation of the channels through a mechanism that depends on Gbetagamma. RGS proteins appear to increase the concentration of free Gbetagamma in addition to acting as GAPs. Thus multiple mechanisms acting at either the level of the M2 mAChRs or the G-proteins can contribute to the regulation of signaling via the M2 mAChRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号