首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mycobacterium tuberculosis (Mtb) contains two clpP genes, both of which are essential for viability. We expressed and purified Mtb ClpP1 and ClpP2 separately. Although each formed a tetradecameric structure and was processed, they lacked proteolytic activity. We could, however, reconstitute an active, mixed ClpP1P2 complex after identifying N-blocked dipeptides that stimulate dramatically (>1000-fold) ClpP1P2 activity against certain peptides and proteins. These activators function cooperatively to induce the dissociation of ClpP1 and ClpP2 tetradecamers into heptameric rings, which then re-associate to form the active ClpP1P2 2-ring mixed complex. No analogous small molecule-induced enzyme activation mechanism involving dissociation and re-association of multimeric rings has been described. ClpP1P2 possesses chymotrypsin and caspase-like activities, and ClpP1 and ClpP2 differ in cleavage preferences. The regulatory ATPase ClpC1 was purified and shown to increase hydrolysis of proteins by ClpP1P2, but not peptides. ClpC1 did not activate ClpP1 or ClpP2 homotetradecamers and stimulated ClpP1P2 only when both ATP and a dipeptide activator were present. ClpP1P2 activity, its unusual activation mechanism and ClpC1 ATPase represent attractive drug targets to combat tuberculosis.  相似文献   

2.
Caseinolytic proteases are large oligomeric assemblies responsible for maintaining protein homeostasis in bacteria and in so doing influence a wide range of biological processes. The functional assembly involves three chaperones together with the oligomeric caseinolytic protease catalytic subunit P (ClpP). This protease represents a potential target for therapeutic intervention in pathogenic bacteria. Here, we detail an efficient protocol for production of recombinant ClpP from Francisella tularensis, and the structural characterization of three crystal forms which grow under similar conditions. One crystal form reveals a compressed state of the ClpP tetradecamer and two forms an open state. A comparison of the two types of structure infers that differences at the enzyme active site result from a conformational change involving a highly localized disorder‐order transition of a β‐strand α‐helix combination. This transition occurs at a subunit‐subunit interface. Our study may now underpin future efforts in a structure‐based approach to target ClpP for inhibitor or activator development. Proteins 2016; 85:188–194. © 2016 Wiley Periodicals, Inc.  相似文献   

3.
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.  相似文献   

4.
The ClpP protease is found across eukaryotic and prokaryotic organisms. It is well-characterized in bacteria where its function is important in maintaining protein homeostasis. Along with its ATPase partners, it has been shown to play critical roles in the regulation of enzymes involved in important cellular pathways. In eukaryotes, ClpP is found within cellular organelles. Proteomic studies have begun to characterize the role of this protease in the mitochondria through its interactions. Here, we discuss the proteomic techniques used to identify its interactors and present an atlas of mitochondrial ClpP substrates. The ClpP substrate pool is extensive and consists of proteins involved in essential mitochondrial processes such as the Krebs cycle, oxidative phosphorylation, translation, fatty acid metabolism, and amino acid metabolism. Discoveries of these associations have begun to illustrate the functional significance of ClpP in human health and disease.  相似文献   

5.
In the ClpXP compartmental protease, ring hexamers of the AAA(+) ClpX ATPase bind, denature and then translocate protein substrates into the degradation chamber of the double-ring ClpP(14) peptidase. A key question is the extent to which functional communication between ClpX and ClpP occurs and is regulated during substrate processing. Here, we show that ClpX-ClpP affinity varies with the protein-processing task of ClpX and with the catalytic engagement of the active sites of ClpP. Functional communication between symmetry-mismatched ClpXP rings depends on the ATPase activity of ClpX and seems to be transmitted through structural changes in its IGF loops, which contact ClpP. A conserved arginine in the sensor II helix of ClpX links the nucleotide state of ClpX to the binding of ClpP and protein substrates. A simple model explains the observed relationships between ATP binding, ATP hydrolysis and functional interactions between ClpX, protein substrates and ClpP.  相似文献   

6.
Tolerance of environmental stress, especially low pH, by Streptococcus mutans is central to the virulence of this organism. The Clp ATPases are implicated in the tolerance of, and regulation of the response to, stresses by virtue of their protein reactivation and remodeling activities and their capacity to target misfolded proteins for degradation by the ClpP peptidase. The purpose of this study was to dissect the role of selected clp genes in the stress responses of S. mutans, with a particular focus on acid tolerance and adaptation. Homologues of the clpB, clpC, clpE, clpL, clpX, and clpP genes were identified in the S. mutans genome. The expression of clpC and clpP, which were chosen as the focus of this study, was induced at low pH and at growth above 40 degrees C. Inactivation of ctsR, the first of two genes in the clpC operon, demonstrated that CtsR acts as a repressor of clp and groES-EL gene expression. Strains lacking ClpP, but not strains lacking ClpC, were impaired in their ability to grow under stress-inducing conditions, formed long chains, aggregated in culture, had reduced genetic transformation efficiencies, and had a reduced capacity to form biofilms. Comparison of two-dimensional protein gels from wild-type cells and the ctsR and clpP mutants revealed many changes in the protein expression patterns. In particular, in the clpP mutant, there was an increased production of GroESL and DnaK, suggesting that cells were stressed, probably due to the accumulation of denatured proteins.  相似文献   

7.
ATP-dependent intracellular proteolysis is essential for all living organisms. ClpP, the proteolytic subunit of the ATP-dependent Clp proteases, shares 56% protein identity between B. subtilis and man. The aim of this study was to verify, whether human ClpP (HClpP) is able to substitute the bacterial pendant, BClpP, irrespectively of the huge evolutionary distance. For this reason hclpP was expressed from the natural B. subtilis promoters at the original chromosomal site. Growth at 37 °C as well as sporulation in the presence of hclpP depict an intermediate phenotype between wild type and clpP mutant suggesting a partial functional substitution of BClpP by HClpP. Northern as well as Western blot analyses show a similar induction pattern of both, bclpP and hclpP during heat stress on the mRNA as well as on the protein levels. Co-immunoprecipitation experiments imply specific interaction of HClpP with bacterial ClpC, ClpX and ClpE during control as well as heat stress conditions. Radioactive pulse-chase labeling and immunoprecipitation revealed that a ClpXP substrate, the short-living regulatory protein MgsR, is degraded by HClpP, although with an extremely slower rate in comparison to BClpP. The occurrence of an exceptional thickened cell wall of a clpP mutant can be almost fully reversed by the complementation with HClpP. The utilization of the HClpP expressing strain as a test system for new biological or synthetic active substances targeting BClpP is discussed.  相似文献   

8.
Infections caused by the leading nosocomial pathogen Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. However, the molecular basis of biofilm formation and its regulation are not completely understood. Here, we describe an important role of the ClpP protease in biofilm development and virulence of S. epidermidis. We constructed an isogenic clpP mutant strain of a biofilm-forming clinical isolate of S. epidermidis. The mutant strain showed decreased biofilm formation in vitro and reduced virulence in a rat model of biofilm-associated infection. Biofilm forming ability of the mutant strain could be restored by expressing clpP on a plasmid, but not when a catalytically inactive allele of clpP gene was introduced. These observations indicate that the peptidase function of ClpP determines its role in biofilm formation. Experimental data in this work also suggested that clpP influenced initial attachment of bacteria on the plastic surface, the first step of biofilm formation. Furthermore, clpP was found to be regulated by the quorum-sensing agr, suggesting that part of the previously described influence of agr on the initial attachment to plastic surfaces may be mediated by clpP.  相似文献   

9.
ClpP: a distinctive family of cylindrical energy-dependent serine proteases   总被引:1,自引:0,他引:1  
Yu AY  Houry WA 《FEBS letters》2007,581(19):3749-3757
Processes maintaining protein homeostasis in the cell are governed by the activities of molecular chaperones that mainly assist in the folding of polypeptide chains and by a large class of proteases that regulate protein levels through degradation. ClpP proteases define a distinctive family of cylindrical, energy-dependent serine proteases that are highly conserved throughout bacteria and eukaryota. They typically interact with ATP-dependent AAA+ chaperones that bind and unfold target substrates and then translocate them into ClpP for degradation. Structural and functional studies have provided a detailed view of the mechanism of function of this class of proteases.  相似文献   

10.
Clp is a barrel-shaped hetero-oligomeric ATP-dependent protease comprising a hexameric ATPase (ClpX or ClpA) that unfolds protein substrates and translocates them into the central chamber of the tetradecameric proteolytic component (ClpP) where they are degraded processively to short peptides. Chamber access is controlled by the N-terminal 20 residues (for Escherichia coli) in ClpP that prevent entry of large polypeptides in the absence of the ATPase subunits and ATP hydrolysis. Remarkably, removal of 10–17 residues from the mature N-terminus allows processive degradation of a large model unfolded substrate to short peptides without the ATPase subunit or ATP hydrolysis; removal of 14 residues is maximal for activation. Furthermore, since the product size distribution of Δ14-ClpP is identical to ClpAP and ClpXP, the ATPases do not play an essential role in determining this distribution. Comparison of the structures of Δ14-ClpP and Δ17-ClpP with other published structures shows R15 and S16 are labile and that residue 17 can adopt a range of rotomers to ensure protection of a hydrophobic pocket formed by I19, R24 and F49 and maintain a hydrophilic character of the pore.  相似文献   

11.
12.
ClpP and its ATPase compartment, ClpX or ClpA, remove misfolded proteins in cells and are of utmost importance in protein quality control. The ring hexamers of ClpA or ClpX recognize, unfold, and translocate target substrates into the degradation chamber of the double-ring tetradecamer of ClpP. The overall reaction scheme catalyzed by ClpXP or ClpAP has been proposed; however, the molecular mechanisms associated with substrate recognition and degradation have not yet been clarified in detail. To investigate these mechanisms, we determined the crystal structures of ClpP from Helicobacter pylori in complex with product peptides bound to the active site as well as in the apo state. In the complex structure, the peptides are zipped with two antiparallel strands of ClpP and point to the adjacent active site, thus providing structural explanations for the broad substrate specificity, the product inhibition and the processive degradation of substrates in the chamber. The structures also suggest that substrate binding causes local conformational changes around the active site that ultimately induce the active conformation of ClpP.  相似文献   

13.
14.
15.
《Biophysical journal》2022,121(20):3907-3916
ATPases associated with diverse cellular activities (AAA+) proteases power the maintenance of protein homeostasis by coupling ATP hydrolysis to mechanical protein unfolding, translocation, and ultimately degradation. Although ATPase activity drives a large portion of the mechanical work these molecular machines perform, how the peptidase contributes to the forceful denaturation and processive threading of substrates remains unknown. Here, using single-molecule optical trapping, we examine the mechanical activity of the caseinolytic peptidase P (ClpP) from Escherichia coli in the absence of a partner ATPase and in the presence of an activating small-molecule acyldepsipeptide. We demonstrate that ClpP grips protein substrate under mechanical loads exceeding 40 pN, which are greater than those observed for the AAA+ unfoldase ClpX and the AAA+ protease complexes ClpXP and ClpAP. We further characterize substrate-ClpP bond lifetimes and rupture forces under varying loads. We find that the resulting slip bond behavior does not depend on ClpP peptidase activity. In addition, we find that unloaded bond lifetimes between ClpP and protein substrate are on a timescale relevant to unfolding times (up to ~160 s) for difficult to unfold model substrate proteins. These direct measurements of the substrate-peptidase bond under load define key properties required by AAA+ proteases to mechanically unfold and degrade protein substrates.  相似文献   

16.
17.
18.
19.
Acyldepsipeptides (ADEPs) antibiotics bind to Escherichia coli ClpP mimicking the interactions that the IGL/F loops in ClpA or ClpX ATPases establish with the hydrophobic pockets surrounding the axial pore of the tetradecamer that the protease forms. ADEP binding induces opening of the gates blocking the axial channel of ClpP and allowing protein substrates to be translocated and hydrolysed in the degradation chamber. To identify the structural determinants stabilizing the open conformation of the axial channel for efficient substrate translocation, we constructed ClpP variants with amino acid substitutions in the N‐terminal region that forms the axial gates. We found that adoption of a β‐hairpin loop by this region and the integrity of the hydrophobic cluster at the base of this loop are necessary elements for the axial gate to efficiently translocate protein substrates. Analysis of ClpP variants from Bacillus subtilis suggested that the identified structural requirements of the axial channel for efficient translocation are conserved between Gram‐positive and Gram‐negative bacteria. These findings provide mechanistic insights into the activation of ClpP by ADEPs as well as the gating mechanism of the protease in the context of the ClpAP and ClpXP complexes.  相似文献   

20.
ClpP is a self-compartmentalized protease, which has very limited degradation activity unless it associates with ClpX to form ClpXP or with ClpA to form ClpAP. Here, we show that ClpX binding stimulates ClpP cleavage of peptides larger than a few amino acids and enhances ClpP active-site modification. Stimulation requires ATP binding but not hydrolysis by ClpX. The magnitude of this enhancement correlates with increasing molecular weight of the molecule entering ClpP. Amino-acid substitutions in the channel loop or helix A of ClpP enhance entry of larger substrates into the free enzyme, eliminate ClpX binding in some cases, and are not further stimulated by ClpX binding in other instances. These results support a model in which the channel residues of free ClpP exclude efficient entry of all but the smallest peptides into the degradation chamber, with ClpX binding serving to relieve these inhibitory interactions. Specific ClpP channel variants also prevent ClpXP translocation of certain amino-acid sequences, suggesting that the wild-type channel plays an important role in facilitating broad translocation specificity. In combination with previous studies, our results indicate that collaboration between ClpP and its partner ATPases opens a gate that functions to exclude larger substrates from isolated ClpP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号