共查询到20条相似文献,搜索用时 15 毫秒
1.
The topography of the active sites of native horseradish peroxidase and manganic horseradish peroxidase has been studied with the aid of a spin-labeled analog of benzhydroxamic acid (N-(1-oxyl-2,2,5,5-tetramethylpyrroline-3-carboxy)-p-aminobenzhydroxamic acid). The optical spectra of complexes between the spin-labeled analog of benzhydroxamic acid and Fe3+ or Mn3+ horseradish peroxidase resembled the spectra of the corresponding enzyme complexes with benzhydroxamic acid. Electron spin resonance (ESR) measurement indicated that at pH 7 the nitroxide moiety of the spin-labeled analog of benzhydroxamic acid became strongly immobilized when this label bound to either ferric or manganic horseradish peroxidase. The titration of horseradish peroxidase with the spin-labeled analog of benzhydroxamic acid revealed a single binding site with association constant Ka approximately 4.7 . 10(5) M-1. Since the interaction of ligands (e.g. F-, CN-) and H2O2 with horseradish peroxidase was found to displace the spin label, it was concluded that the spin label did not indeed bind to the active site of horseradish peroxidase. At alkaline pH values, the high spin iron of native horseradish peroxidase is converted to the low spin form and the binding of the spin-labeled analog of benzhydroxamic acid to horseradish peroxidase is completely inhibited. From the changes in the concentration of both bound and free spin label with pH, the pK value of the acid-alkali transition of horseradish peroxidase was found to be 10.5. The 2Tm value of the bound spin label varied inversely with temperature, reaching a value of 68.25 G at 0 degree C and 46.5 G at 52 degrees C. The dipolar interaction between the iron atom and the free radical accounted for a 12% decrease in the ESR signal intensity of the spin label bound to horseradish peroxidase. From this finding, the minimum distance between the iron atom and nitroxide group and hence a lower limit to the depth of the heme pocket of horseradish peroxidase was estimated to be 22 A. 相似文献
2.
3.
Horseradish apoperoxidase (apoHRP) was reconstituted with various porphyrin derivatives, e.g., ferric, cupric, manganese, and zinc protoporphyrin IX, metal-free protoporphyrin IX, hematoporphyrin IX and deuteroporphyrin IX. The visible absorption spectra of these porphyrin-apoHRP complexes were examined. The time required for maximum development of the new Soret peak after reconstitution was used to measure the rate of porphyrin-apoHRP reconstitution. All of the four metal-protoporphyrins reconstituted with apoHRP at the same rate as metal-free protoporphyrin IX, whereas, for the metal-free porphyrins, the rates of reconstitution were in the order of deuteroporphyrin IX > hematoporphyrin IX > protoporphyrin IX. The porphyrins on the reconstituted porphyrin-apoHRP complexes were used as localized photosensitizers for photodynamic studies. No amino acid residues were oxidized on illumination of the ferric, cupric and manganese protoporphyrin IX-apoHRP complexes due to the paramagnetic properties of these metal ions. With diamagnetic zinc ion, two histidine and one methionine residues were oxidized which was the same as in the protoporphyrin IX- and hematoporphyrin IX-apoHRP complexes. However, only one histidine was destroyed on illumination of the deuteroporphyrin IX-apoHRP complex. The results confirmed the resistance of horseradish peroxidase to photodynamic action and suggested the involvement of at least one histidine residue in the heme environment of horseradish peroxidase. 相似文献
4.
Horseradish peroxidase can be reconstituted with cobalt porphyrin to give a cobaltic holoenzyme having physicochemical properties quite similar to those of the native ferric protein. The cobaltic protein (Co3+HRP) can be reduced to the cobaltous form (CoHRP), the analogue of ferroperoxidase and the reduced cobalt protein can bind O2 to form an analogue of oxyferroperoxidase (Compound III). Since both the CoHRP and oxy-CoHRP are EPR-visible, the cobalt has been used to probe the nature of the heme crevice in these two protein forms. The occurrence of a three-line 14N superhyperfine pattern in the spectrum of the former unambiguously shows that in the divalent state of the protein the proximal axial ligand is a nitrogenous base. The spectrum of the latter shows a uniquely large Aparallel(59Co) = 23.2 G. Although we confirm the reported failure of the Co3+HRP to catalyze peroxide-dependent oxidations of classical peroxidase substrates (Gjessing, E.C., and Sumner, J.B. (1942) Arch. Biochem. 1, 1), the oxy-CoHRP does undergo oxidation-reduction reactions analogous to those exhibited in the cytochrome P-450 catalytic cycle. 相似文献
5.
Zero-field splitting of Fe3+ in horseradish peroxidase and of Fe4+ in horseradish peroxidase compound I from electron spin relaxation data.
下载免费PDF全文

From the temperature dependence of the Orbach relaxation rate of the paramagnetic center in horseradish peroxidase (HRP), we deduce an excited-state energy of 40.9 +/- 1.1 K. Similar studies on the broad EPR signal of HRP compound I indicate a much weaker Orbach relaxation process involving an excited state at 36.8 +/- 2.5 K. The strength of the Orbach process in HRP-I is weaker than one would normally estimate by 2-4 orders of magnitude. This fact lends support to the model of HRP-I involving a spin 1/2 free radical coupled to a spin 1 Fe4+ heme iron via a weak exchange interaction. Such a system should exhibit an Orbach relaxation process involving delta E, the excited state of the Fe4+ ion, but reduced in strength by (Jyy/delta E)2, where Jyy is related to the strength of the exchange interaction between the two spin systems. 相似文献
6.
Summary Native horseradish peroxidase, as well as its reduced and carboxymethylated form, and the apoenzyme, showed resistance to photodynamic action. Sensitivity to this action was detected only in reduced and carboxymethylated apoenzyme, when the photooxidation of its histidine residues was observed. When analyzing the bulk hydrophobic character (Hf) and the accessibility coefficients (Br) in those amino acid residues which can be subjected to photooxidation in horseradish peroxidase, it was found that all of them are situated in hydrophobic zones with low accessibility coefficients. This could justify the high resistance of this enzyme to photodynamic action. The only exception is tryptophan-117, which has low values of Hf and Br, and therefore its resistance to photodynamic action can only be explained in terms of its location and environment. Tryptophan-117 would be situated in a zone of antiparallel-structure, according to Chou and Fasman's predictive method for protein conformation. 相似文献
7.
Horseradish peroxidase has been shown to be a metalloprotein in which calcium contributes to the structural stability of the protein. Isoenzyme C and A contain 2.0 and 1.4 moles calcium/mole enzyme, respectively, which can be removed by treatment with guanidine hydrochloride and EDTA. Calcium-free isoenzyme C, but not isoenzyme A, reconstitutes upon addition of calcium and regains enzymatic activity. Free calcium readily exchanges with isoenzyme C, but only to a small extent with isoenzyme A. In addition the role of calcium in maintaining molecular conformation is evidenced by the effects of calcium removal from the isoenzyme C on the thermal stability of the protein. 相似文献
8.
9.
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzyme's activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme. 相似文献
10.
Gilabert MA Fenoll LG García-Molina F García-Ruiz PA Tudela J García-Cánovas F Rodríguez-López JN 《Biological chemistry》2004,385(12):1177-1184
We report here on the stereospecificity observed in the action of horseradish peroxidase (HRPC) on monophenol and diphenol substrates. Several enantiomers of monophenols and o-diphenols were assayed: L-tyrosinol, D-tyrosinol, L-tyrosine, DL-tyrosine, D-tyrosine, L-dopa, DL-dopa, D-dopa, L-alpha-methyldopa, DL-alpha-methyldopa, DL-adrenaline, D-adrenaline, L-isoproterenol, DL-isoproterenol and D-isoproterenol. The electronic density at the carbon atoms in the C-1 and C-2 positions of the benzene ring were determined by NMR assays (delta1 and delta2). This value is related to the nucleophilic power of the oxygen atom of the hydroxyl groups and to its oxidation-reduction capacity. The spatial orientation of the ring substituents resulted in lower Km values for L- than for D-isomers. The kcat values for substrates capable of saturating the enzyme were lower for D- than for L-isomers, although both have the same delta1 and delta2 NMR values for carbons C-1 and C-2, and therefore the same oxidation-reduction potential. In the case of substrates that cannot saturate the enzyme, the values of the binding constant for compound II (an intermediate in the catalytic cycle) followed the order: L-isomer>DL-isomer>D-isomer. Therefore, horseradish peroxidase showed stereospecificity in its affinity toward its substrates (K m) and in their transformation reaction rates (k cat). 相似文献
11.
Despite highly conserved active-site structures, members of the plant peroxidase superfamily exhibit a wide range of pH optima. Horseradish peroxidase isozyme C (HRPC) is an ideal peroxidase to investigate the structural determinants of pH stability and activity in superfamily members. Conflicting reports exist on the low-pH stability of HRPC and consequently the pKa of the catalytic distal histidine, which is neutral in active peroxidases. Towards resolving such discrepancies, acid-induced changes in HRPC from two popular commercial suppliers were systematically analyzed. Specifically, FTIR v(CO) and Soret-CD spectra of HRPC-CO and Soret absorption of ferric HRPC were recorded to probe time-dependent heme-pocket changes at pH 3.0 in phosphate, citrate and formate buffers, while the FTIR amide I' and far-UV CD spectra were examined to probe changes in secondary structure. Both HRPC-CO samples exhibited identical pH 7.0 v(CO) bands at 1934 and 1905 cm-1. In the pH 3.0 spectrum of sample A, the 1934 cm-1 band was dominant while a broad 1969 cm-1 band appeared in sample B. The intensity of this band, which is assigned to solvent-exposed heme, was greater in citrate than phosphate buffer, but in formate the 1934 cm-1 band remained dominant. Other spectral changes mirrored the v(CO) trends. No time- or buffer-anion-dependent conformation changes were detected in 1 mM CaCl2, revealing that buffer-anion-dependent leaching of stabilizing Ca2+ from HRPC occurs at pH 3.0. Since the N-glycans present in HRPC are of the flexible protein-surface-shielding type, the variation in low-pH conformational stability of the HRPC samples could be attributed to heterogeneous glycosylation, which was detected by SDS-PAGE. It is further proposed that glycosylation patterns may affect the low-pH stability of class II and III plant peroxidases. 相似文献
12.
G J Bartling S K Chattopadhyay C W Barker H D Brown 《Canadian journal of biochemistry》1975,53(8):868-874
A new method of enzyme immobilization has been described using poly(4-methacryloxybenzoic acid) as the carrier. Activation of the polymer, prior to enzyme attachment, was achieved with N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. The enzyme coupling step proceeded through nucleophilic attack by the protein on a mixed carbonic anhydride. The degree of polymer activation was determined by analysis for quinoline, a by-product of the reaction. The polymer-enzyme complex was compared to the enzyme in solution in terms of pH optimum, substrate kinetics, and thermal denaturation. Potential uses of the polymerenzyme system in chemical synthesis of benzoquinone derivatives are discussed. 相似文献
13.
L Avigliano V Carelli A Casini A Finazzi-Agrò F Liberatore 《The Biochemical journal》1985,226(2):391-395
Horseradish peroxidase catalyses the oxidation of NAD dimers, (NAD)2, to NAD+ in accordance with a reaction that is pH-dependent and requires 1 mol of O2 per 2 mol of (NAD)2. Horseradish peroxidase also catalyses the peroxidation of (NAD)2 to NAD+. In contrast, bacterial NADH peroxidase does not catalyse the peroxidation or the oxidation of (NAD)2. A free-radical mechanism is proposed for both horseradish-peroxidase-catalysed oxidation and peroxidation of (NAD)2. 相似文献
14.
15.
Wound-induced expression of horseradish peroxidase 总被引:1,自引:0,他引:1
Akiyoshi Kawaoka Tomohiro Kawamoto Hiroshi Ohta Masami Sekine Mitsuo Takano Atsuhiko Shinmyo 《Plant cell reports》1994,13(3-4):149-154
Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the -glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.Abbreviations HRP
horseradish peroxidase
-
prx
gene for peroxidase
- GUS
-glucuronidase
- CaMV
cauliflower mosaic virus 相似文献
16.
Optical and magnetic measurements of horseradish peroxidase. I. Azide complex of peroxidase 总被引:1,自引:0,他引:1
M Tamura 《Biochimica et biophysica acta》1971,243(2):239-248
17.
18.
Magnetic circular dichroism (MCD) spectra were observed for native (Fe(III)) horseradish peroxidase (peroxidase, EC 1.11.1.7), its alkaline form and fluoro- and cyano-derivatives, and also for reduced (Fe(II)) horseradish peroxidase and its carbonmonoxy-- and cyano- derivatives. MCD spectra were obtained for the cyano derivative of Fe(III) horseradish peroxidase, and reduced horseradish peroxidase and its carbonmonoxy- derivative nearly identical with those for the respective myoglobin derivatives. The alkaline form of horseradish peroxidase exhibits a completely different MCD spectrum from that of myoglobin hydroxide. Thus it shows an MCD spectrum which falls into the ferric low-spin heme grouping. Native horseradish peroxidase and its fluoro derivatives show almost identical MCD spectra with those for the respective myoglobin derivatives in the visible region, though some changes were detected in the Soret region. Therefore it is concluded that the MCD spectra on the whole are sensitive to the spin state of the heme iron rather than to the porphyrin structures. The cyanide derivative of reduced horseradish peroxidase exhibited a characteristic MCD spectrum of the low-spin ferrous derivative like oxy-myoglobin. 相似文献
19.
D G Pina A V Shnyrova F Gavilanes A Rodríguez F Leal M G Roig I Y Sakharov G G Zhadan E Villar V L Shnyrov 《European journal of biochemistry》2001,268(1):120-126
Detailed differential scanning calorimetry (DSC), steady-state tryptophan fluorescence and far-UV and visible CD studies, together with enzymatic assays, were carried out to monitor the thermal denaturation of horseradish peroxidase isoenzyme c (HRPc) at pH 3.0. The spectral parameters were complementary to the highly sensitive but integral method of DSC. Thus, changes in far-UV CD corresponded to changes in the overall secondary structure of the enzyme, while that in the Soret region, as well as changes in intrinsic tryptophan fluorescence emission, corresponded to changes in the tertiary structure of the enzyme. The results, supported by data about changes in enzymatic activity with temperature, show that thermally induced transitions for peroxidase are irreversible and strongly dependent upon the scan rate, suggesting that denaturation is under kinetic control. It is shown that the process of HRPc denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme N -->k D where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated. 相似文献
20.
Heme-modification studies on horseradish peroxidase 总被引:4,自引:0,他引:4