首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Structural basis for the inhibition of tyrosine kinase activity of ZAP-70   总被引:2,自引:0,他引:2  
Deindl S  Kadlecek TA  Brdicka T  Cao X  Weiss A  Kuriyan J 《Cell》2007,129(4):735-746
ZAP-70, a cytoplasmic tyrosine kinase required for T cell antigen receptor signaling, is controlled by a regulatory segment that includes a tandem SH2 unit responsible for binding to immunoreceptor tyrosine-based activation motifs (ITAMs). The crystal structure of autoinhibited ZAP-70 reveals that the inactive kinase domain adopts a conformation similar to that of cyclin-dependent kinases and Src kinases. The autoinhibitory mechanism of ZAP-70 is, however, distinct and involves interactions between the regulatory segment and the hinge region of the kinase domain that reduce its flexibility. Two tyrosine residues in the SH2-kinase linker that activate ZAP-70 when phosphorylated are involved in aromatic-aromatic interactions that connect the linker to the kinase domain. These interactions are inconsistent with ITAM binding, suggesting that destabilization of this autoinhibited ZAP-70 conformation is the first step in kinase activation.  相似文献   

3.
4.
Syk tyrosine kinase and Src homology 2 (SH2) domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) are signaling mediators activated downstream of immunoreceptor tyrosine-based activation motif (ITAM)-containing immunoreceptors and integrins. While the signaling cascades descending from integrins are similar to immunoreceptors, the mechanism of Syk activation and SLP-76 recruitment remains unclear. We used an in vivo structure-function approach to study the requirements for the domains of Syk and SLP-76 in immunoreceptor and integrin signaling. We found that both SH2 domains and the kinase domain of Syk are required for immunoreceptor-dependent signaling and cellular response via integrins. While the Gads-binding domain of SLP-76 is needed for immunoreceptor signaling, it appears dispensable for integrin signaling. Syk and SLP-76 also are required for initiating and/or maintaining separation between the blood and lymphatic vasculature. Therefore, we correlated the signaling requirement of the various domains of Syk and SLP-76 to their requirement in regulating vascular separation. Our data suggest ITAMs are required in Syk-dependent integrin signaling, demonstrate the separation of the structural features of SLP-76 to selectively support immunoreceptor versus integrin signaling, and provide evidence that the essential domains of SLP-76 for ITAM signals are those which most efficiently support separation between lymphatic and blood vessels.  相似文献   

5.
A biotin-streptavidin-based technique was developed for high affinity, unidirectional, and specific immobilization of synthetic peptides to a solid phase. Biotinylated 23-mer carboxamide peptides corresponding to the three immunoreceptor tyrosine-based activation motifs (ITAMs) of the T cell antigen receptor associated ζ-chain (TCR-ζ) in their bis-, mono-, or unphosphorylated forms were used to study the binding of cellular proteins from human Jurkat T cells to these signal transduction motifs. The protein tyrosine kinase ZAP-70 bound specifically to all bisphosphorylated peptides but not to the mono- or unphosphorylated peptides. In contrast, Shc, phosphatidylinositol 3-kinase (P13K), Grb2, and Ras-GTPase activating protein (GAP) bound with different affinities to the bis- or monophosphorylated peptides, while the Src family protein tyrosine kinase (PTK) Fyn did not bind specifically to any of the tested peptides. The different preferences of the studied signaling molecules for distinct ITAMs, and in particular the binding of some of them preferentially to monophosphorylated peptides, suggests that the TCR-ζ may bind multiple signaling molecules with each ITAM binding a unique set of such molecules. In addition, partial phosphorylation of the ITAMs may result in recruitment of different proteins compared to double phosphorylation. This may be crucial for coupling of the TCR to various effector functions under different conditions of receptor triggering. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Innate immune signaling by Toll-like receptors (TLRs) involves receptor phosphorylation, which helps to shape and drive key inflammatory outputs, yet our understanding of the kinases and mechanisms that mediate TLR phosphorylation is incomplete. Spleen tyrosine kinase (Syk) is a nonreceptor protein tyrosine kinase, which is known to relay adaptive and innate immune signaling, including from TLRs. However, TLRs do not contain the conserved dual immunoreceptor tyrosine-based activation motifs that typically recruit Syk to many other receptors. One possibility is that the Syk-TLR association is indirect, relying on an intermediary scaffolding protein. We previously identified a role for the palmitoylated transmembrane adapter protein SCIMP in scaffolding the Src tyrosine kinase Lyn, for TLR phosphorylation, but the role of SCIMP in mediating the interaction between Syk and TLRs has not yet been investigated. Here, we show that SCIMP recruits Syk in response to lipopolysaccharide-mediated TLR4 activation. We also show that Syk contributes to the phosphorylation of SCIMP and TLR4 to enhance their binding. Further evidence pinpoints two specific phosphorylation sites in SCIMP critical for its interaction with Syk-SH2 domains in the absence of immunoreceptor tyrosine-based activation motifs. Finally, using inhibitors and primary macrophages from SCIMP-/- mice, we confirm a functional role for SCIMP-mediated Syk interaction in modulating TLR4 phosphorylation, signaling, and cytokine outputs. In conclusion, we identify SCIMP as a novel, immune-specific Syk scaffold, which can contribute to inflammation through selective TLR-driven inflammatory responses.  相似文献   

7.
The linker region of Syk and ZAP70 tyrosine kinases plays an important role in regulating their function. There are three conserved tyrosines in this linker region; Tyr317 of Syk and its equivalent residue in ZAP70 were previously shown to negatively regulate the function of Syk and ZAP70. Here we studied the roles of the other two tyrosines, Tyr342 and Tyr346 of Syk, in Fc epsilon RI-mediated signaling. Antigen stimulation resulted in Tyr342 phosphorylation in mast cells. Syk with Y342F mutation failed to reconstitute Fc epsilon RI-initiated histamine release. In the Syk Y342F-expressing cells there was dramatically impaired receptor-induced phosphorylation of multiple signaling molecules, including LAT, SLP-76, phospholipase C-gamma2, but not Vav. Compared to wild-type Syk, Y342F Syk had decreased binding to phosphorylated immunoreceptor tyrosine-based activation motifs and reduced kinase activity. Surprisingly, mutation of Tyr346 had much less effect on Fc epsilon RI-dependent mast cell degranulation. An anti-Syk-phospho-346 tyrosine antibody indicated that antigen stimulation induced only a very minor increase in the phosphorylation of this tyrosine. Therefore, Tyr342, but not Tyr346, is critical for regulating Syk in mast cells and the function of these tyrosines in immune receptor signaling appears to be different from what has been previously reported for the equivalent residues of ZAP70.  相似文献   

8.
The protein tyrosine kinase Syk plays an essential role in Fc epsilon RI-mediated histamine release in mast cells by regulating the phosphorylation of other proteins. We investigated the functional role of a putative Syk phosphorylation site, Tyr317. This tyrosine in the linker region of Syk is a possible site for binding by the negative regulator Cbl. Syk with Tyr317 mutated to Phe (Y317F) was expressed in a Syk-negative variant of the RBL-2H3 mast cells. Compared with cells expressing wild-type Syk, expression of the Y317F mutant resulted in an increase in the Fc epsilon RI-mediated tyrosine phosphorylation of phospholipase C-gamma and a dramatic enhancement of histamine release. The in vivo Fc epsilon RI-induced tyrosine phosphorylation of wild-type Syk and that of the Y317F mutant were similar. Although the Fc epsilon RI-induced tyrosine phosphorylation of total cellular proteins was enhanced in the cells expressing the Y317F Syk, the phosphorylation of some other molecules, including the receptor subunits, Vav and mitogen-activated protein kinase, was not increased. The Fc epsilon RI-induced phosphorylation of Cbl was downstream of Syk kinase activity and was unchanged by expression of the Y317F mutation. These data indicate that Tyr317 in the linker region of Syk functions to negatively regulate the signals leading to degranulation.  相似文献   

9.
The protein-tyrosine kinase Syk couples immune recognition receptors to multiple signal transduction pathways, including the mobilization of calcium and the activation of NFAT. The ability of Syk to regulate signaling is influenced by its phosphorylation on tyrosine residues within the linker B region. The phosphorylation of both Y342 and Y346 is necessary for optimal signaling from the B cell receptor for antigen. The SH2 domains of multiple signaling proteins share the ability to bind this doubly phosphorylated site. The NMR structure of the C-terminal SH2 domain of PLCgamma (PLCC) bound to a doubly phosphorylated Syk peptide reveals a novel mode of phosphotyrosine recognition. PLCC undergoes extensive conformational changes upon binding to form a second phosphotyrosine-binding pocket in which pY346 is largely desolvated and stabilized through electrostatic interactions. The formation of the second binding pocket is distinct from other modes of phosphotyrosine recognition in SH2-protein association. The dependence of signaling on simultaneous phosphorylation of these two tyrosine residues offers a new mechanism to fine-tune the cellular response to external stimulation.  相似文献   

10.
Aggregation of the multichain (alphabetagamma2) high-affinity IgE receptor (Fcepsilon RI) initiates a signaling cascade that results in the release of allergic mediators. The cytoplasmic tails of the FcepsilonRI-beta and -gamma subunits contain immunoreceptor tyrosine-based activation motifs (ITAMs). Phosphorylation of the gammaITAM mediates activation of Syk kinase and is sufficient for triggering the responses induced by Fcepsilon RI crosslinking. Phosphorylation of the betaITAM is insufficient to mediate cell activation. The rat betaITAM contains three tyrosines (Tyr218, Tyr224, and Tyr228) with an intermediate noncanonical tyrosine. Synthetic peptides based on the ITAM of the FcepsilonRI-beta subunit were used to investigate the role of each phosphotyrosine in the binding of signaling proteins to this motif. Among the proteins that bind to phosphorylated beta ITAM are Syk, Grb2, Shc, SHIP, and SHP-1, and binding does not depend on previous cell activation. Nonphosphorylated peptides do not bind these proteins. Syk binding to beta-peptides is dependent on the number and position of phosphotyrosines in the ITAM. Phosphorylation of Tyr218 seems to be most important for Syk binding. Recruitment of Syk and other signaling proteins to the beta-subunit might be important for its amplifier role.  相似文献   

11.
Syk and ZAP-70 form a subfamily of nonreceptor tyrosine kinases that contain tandem SH2 domains at their N termini. Engagement of these SH2 domains by tyrosine-phosphorylated immunoreceptor tyrosine-based activation motifs leads to kinase activation and downstream signaling. These kinases are also regulated by beta3 integrin-dependent cell adhesion via a phosphorylation-independent interaction with the beta3 integrin cytoplasmic domain. Here, we report that the interaction of integrins with Syk and ZAP-70 depends on the N-terminal SH2 domain and the interdomain A region of the kinase. The N-terminal SH2 domain alone is sufficient for weak binding, and this interaction is independent of tyrosine phosphorylation of the integrin tail. Indeed, phosphorylation of tyrosines within the two conserved NXXY motifs in the integrin beta3 cytoplasmic domain blocks Syk binding. The tandem SH2 domains of these kinases bind to multiple integrin beta cytoplasmic domains with varying affinities (beta3 (Kd = 24 nm) > beta2 (Kd = 38 nm) > beta1 (Kd = 71 nm)) as judged by both affinity chromatography and surface plasmon resonance. Thus, the binding of Syk and ZAP-70 to integrin beta cytoplasmic domains represents a novel phosphotyrosine-independent interaction mediated by their N-terminal SH2 domains.  相似文献   

12.
汉滩病毒(HTNV)的G1蛋白胞质区尾段包含保守的免疫受体酪氨酸活化基序(ITAM)样基序,该基序与许多重要的免疫受体胞质区ITAM基序同源性较高。为了研究HTNV的G1 ITAM样基序的免疫信号转导功能,首先人工合成了一段保守的酪氨酸残基磷酸化的G1 ITAM样基序多肽,应用体外蛋白激酶共沉淀实验,分别从Jur-kat细胞和Raji细胞裂解物中初筛到5~9种与该基序相互作用的磷酸化蛋白或激酶;然后通过突变体分析、体外磷酸化实验和体外激酶共沉淀-免疫印迹分析,进一步确证了G1 ITAM样基序在体外可以与Src家族蛋白酪氨酸激酶(PTK)Lyn、Fyn及其下游Syk家族激酶Syk、ZAP-70相互作用,而这种相互作用依赖于该基序中两个高度保守的酪氨酸残基的存在。上述研究表明,HTNV G1蛋白胞质区包含一个高度保守的功能性ITAM样基序,该基序在体外可以与TCR和BCR信号转导中关键的PTK相互作用,为进一步探讨HTNV G1蛋白ITAM样基序在肾综合征出血热(HFRS)免疫信号传递中的作用奠定了基础。  相似文献   

13.
Aggregation of Fc epsilon RI on mast cells and basophils leads to autophosphorylation and increased activity of the cytosolic protein tyrosine kinase Syk. We investigated the roles of the Src kinase Lyn, the immunoreceptor tyrosine-based activation motifs (ITAMs) on the beta and gamma subunits of Fc epsilon RI, and Syk itself in the activation of Syk. Our approach was to build a detailed mathematical model of reactions involving Fc epsilon RI, Lyn, Syk, and a bivalent ligand that aggregates Fc(epsilon)RI. We applied the model to experiments in which covalently cross-linked IgE dimers stimulate rat basophilic leukemia cells. The model makes it possible to test the consistency of mechanistic assumptions with data that alone provide limited mechanistic insight. For example, the model helps sort out mechanisms that jointly control dephosphorylation of receptor subunits. In addition, interpreted in the context of the model, experimentally observed differences between the beta- and gamma-chains with respect to levels of phosphorylation and rates of dephosphorylation indicate that most cellular Syk, but only a small fraction of Lyn, is available to interact with receptors. We also show that although the beta ITAM acts to amplify signaling in experimental systems where its role has been investigated, there are conditions under which the beta ITAM will act as an inhibitor.  相似文献   

14.
Syk is an important protein-tyrosine kinase in immunoreceptor signaling. FcepsilonRI aggregation in mast cells induces tyrosine phosphorylation and increased enzymatic activity of Syk. The two adjacent tyrosines in the Syk activation loop are thought to be important for the propagation of FcepsilonRI signaling. To evaluate the phosphorylation of these tyrosines in vivo and further understand the relationship of Syk tyrosine phosphorylation with its function, an antibody was developed specific for phosphorylated tyrosines in the activation loop of Syk. FcepsilonRI aggregation on mast cells induced the phosphorylation of both tyrosine residues of the activation loop. The kinase activity of Syk played the major role in phosphorylating its activation loop tyrosines both in vivo and in vitro. In FcepsilonRI-stimulated mast cells, the total Syk tyrosine phosphorylation paralleled the phosphorylation of its activation loop tyrosines and downstream propagation of signals for histamine release. In contrast, the cell surface binding of anti-ganglioside monoclonal antibody AA4 induced only strong general tyrosine phosphorylation of Syk and minimal histamine release and weak phosphorylation of activation loop tyrosines. These results demonstrate that phosphorylation of the activation loop tyrosines is important for mediating receptor signaling and is a better marker of Syk function than is total Syk tyrosine phosphorylation.  相似文献   

15.
Antigen receptor ligation on lymphocytes activates protein tyrosine kinases and phospholipase C-gamma (PLC-gamma) isoforms. Glutathione S-transferase fusion proteins containing the C-terminal Src-homology 2 [SH2(C)] domain of PLC-gamma1 bound to tyrosyl phosphorylated Syk. Syk isolated from antigen receptor-activated B cells phosphorylated PLC-gamma1 on Tyr-771 and the key regulatory residue Tyr-783 in vitro, whereas Lyn from the same B cells phosphorylated PLC-gamma1 only on Tyr-771. The ability of Syk to phosphorylate PLC-gamma1 required antigen receptor ligation, while Lyn was constitutively active. An mCD8-Syk cDNA construct could be expressed as a tyrosyl-phosphorylated chimeric protein tyrosine kinase in COS cells, was recognized by PLC-gamma1 SH2(C) in vitro, and induced tyrosyl phosphorylation of endogenous PLC-gamma1 in vivo. Substitution of Tyr-525 and Tyr-526 at the autophosphorylation site of Syk in mCD8-Syk substantially reduced the kinase activity and the binding of this variant chimera to PLC-gamma1 SH2(C) in vitro; it also failed to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. In contrast, substitution of Tyr-348 and Tyr-352 in the linker region of Syk in mCD8-Syk did not affect the kinase activity of this variant chimera but almost completely eliminated its binding to PLC-gamma1 SH(C) and completely eliminated its ability to induce tyrosyl phosphorylation of PLC-gamma1 in vivo. Thus, an optimal kinase activity of Syk and an interaction between the linker region of Syk with PLC-gamma1 are required for the tyrosyl phosphorylation of PLC-gamma1.  相似文献   

16.
Structure and function of Syk protein-tyrosine kinase   总被引:31,自引:0,他引:31  
Non-receptor type of protein-tyrosine kinase Syk contains 2 Src homology 2 (SH2) domains in tandem and multiple autophosphorylation sites. Syk is activated upon binding of tandem SH2 domains to immunoreceptor tyrosine-based activating motif (ITAM) and plays an essential role in lymphocyte development and activation of immune cells. Syk is critical for tyrosine phosphorylation of multiple proteins which regulate important pathways leading from the receptor, such as Ca(2+) mobilization and mitogen-activated protein kinase (MAPK) cascades. Recent findings reveal that expression of Syk appears to be involved in a wide variety of cellular functions and pathogenesis of malignant cancer. These observations have demonstrated that Syk is a key molecule that controls multiple physiological functions in cells.  相似文献   

17.
Intracellular expression of Ab fragments has been efficiently used to inactivate therapeutic targets, oncogene products, and to induce viral resistance in plants. Ab fragments expressed in the appropriate cell compartment may also help to elucidate the functions of a protein of interest. We report in this study the successful targeting of the protein tyrosine kinase Syk in the RBL-2H3 rat basophilic leukemia cell line. We isolated from a phage display library human single-chain variable fragments (scFv) directed against the portion of Syk containing the Src homology 2 domains and the linker region that separates them. Among them, two scFv named G4G11 and G4E4 exhibited the best binding to Syk in vivo in a yeast two-hybrid selection system. Stable transfectants of RBL-2H3 cells expressing cytosolic G4G11 and G4E4 were established. Immunoprecipitation experiments showed that intracellular G4G11 and G4E4 bind to Syk, but do not inhibit the activation of Syk following FcepsilonRI aggregation, suggesting that the scFv do not affect the recruitment of Syk to the receptor. Nevertheless, FcepsilonRI-mediated calcium mobilization and the release of inflammatory mediators are inhibited, and are consistent with a defect in Bruton's tyrosine kinase and phospholipase C-gamma2 tyrosine phosphorylation and activation. Interestingly, FcepsilonRI-induced mitogen-activated protein kinase phosphorylation is not altered, suggesting that intracellular G4G11 and G4E4 do not prevent the coupling of Syk to the Ras pathway, but they selectively inhibit the pathway involving phospholipase C-gamma2 activation.  相似文献   

18.
Syk plays a crucial role in the transduction of oxidative stress signaling. In this paper, we investigated the roles of Src homology 2 (SH2) domains of Syk in oxidative stress signaling, using Syk-negative DT40 cells expressing the N- or C-terminal SH2 domain mutant [mSH2(N) or mSH2(C)] of Syk. Tyrosine phosphorylation of Syk in cells expressing mSH2(N) Syk after H(2)O(2) treatment was higher than that in cells expressing wild-type Syk or mSH2(C) Syk. The tyrosine phosphorylation of wild-type Syk and mSH2(C) Syk, but not that of mSH2(N), was sensitive to PP2, a specific inhibitor of Src-family protein-tyrosine kinase. In oxidative stress, the C-terminal SH2 domain of Syk was demonstrated to be required for induction of tyrosine phosphorylation of cellular proteins, phospholipase C (PLC)-gamma2 phosphorylation, inositol 1,4, 5-triphosphate (IP(3)) generation, Ca(2)(+) release from intracellular stores, and c-Jun N-terminal kinase activation. In contrast, in mSH2(N) Syk-expressing cells, tyrosine phosphorylation of intracellular proteins including PLC-gamma2 was markedly induced in oxidative stress. The enhanced phosphorylation of mSH2(N) Syk and PLC-gamma2, however, did not link to Ca(2)(+) mobilization from intracellular pools and IP(3) generation. Thus, the N- and C-terminal SH2 domains of Syk possess distinctive functions in oxidative stress signaling.  相似文献   

19.
Hantaviruses infect human endothelial and immune cells, causing two human diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). We have identified key signaling elements termed immunoreceptor tyrosine-based activation motifs (ITAMs) within the G1 cytoplasmic tail of all HPS-causing hantaviruses. ITAMs direct receptor signaling within immune and endothelial cells and the presence of ITAMs in all HPS-causing hantaviruses provides a means for altering normal cellular responses which maintain vascular integrity. The NY-1 G1 ITAM was shown to coprecipitate a complex of phosphoproteins from cells, and the G1 ITAM is a substrate for the Src family kinase Fyn. The hantavirus ITAM coprecipitated Lyn, Syk, and ZAP-70 kinases from T or B cells, while mutagenesis of the ITAM abolished these interactions. In addition, G1 ITAM tyrosines directed intracellular interactions with Syk by mammalian two-hybrid analysis. These findings demonstrate that G1 ITAMs bind key cellular kinases that regulate immune and endothelial cell functions. There is currently no means for establishing the role of the G1 ITAM in hantavirus pathogenesis. However, the conservation of G1 ITAMs in all HPS-causing hantaviruses and the role of these signaling elements in immune and endothelial cells suggest that functional G1 ITAMs are likely to dysregulate normal immune and endothelial cell responses and contribute to hantavirus pathogenesis.  相似文献   

20.
Wang J  Wu Y  Hu H  Wang W  Lu Y  Mao H  Liu X  Liu Z  Chen BG 《Cellular immunology》2011,(1):39-44
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号