首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
纤毛是一种以细胞微管为主形成的突出于细胞表面的结构,分布于哺乳动物体内的大多数细胞。近年来研究发现,很多人类疾病都与纤毛结构、长度的失调相关,所以有关纤毛的研究是目前研究的热点领域。越来越多的证据证明,纤毛除了提供流体推动力参与细胞的运动功能之外,还具有信号传导的功能,在细胞生命活动的各个方面发挥着多种关键作用。它参与调控细胞生理活动、增殖与分化以及动物个体发育。因此,深入地探索纤毛调控机理对基础生物学理论的发展和人类纤毛相关疾病的攻克有重要意义。该文简要介绍了纤毛的结构、组装与解聚的机制、参与信号传导的功能以及纤毛缺陷同人类疾病的关系。  相似文献   

2.
潘俊敏 《中国科学C辑》2008,38(5):399-409
纤毛或鞭毛(两个名称在本文互为通用)是以细胞微管为核心而组装形成的一种细胞器官.运动纤毛在细胞运动中起的作用是显而易见的,比如精子的运动:近年来发现,曾被认为是退化器官的不动原生纤毛在动物发育和各种生理器官的正常生理活动中起着重要作用.原生纤毛具有调控细胞分裂,Hedgehog信号通路,非经典Wnt信号通路及钙信号传导等的作用.纤毛及其附属结构在结构或功能上的缺陷会导致多种多样的疾病,总称为“纤毛相关疾病”,包括男性不育症、呼吸道疾病(如不动纤毛综合征、肾囊肿、失明、多指(趾)症、内脏转位、肥胖症、高血压乃至精神发育迟滞等.纤毛在结构和功能上是非常保守的,我们目前对纤毛的结构与功能的认识和对“纤毛相关疾病”发生机理的了解主要来自于对各种模式生物的研究,其中包括具有研究优势的模式生物——雷氏衣藻(Chlamydomonas reinhardtii,一种单细胞绿萍).对纤毛的进一步研究将深化人们对“纤毛相关疾病”的认识、促进对它的诊断、预防和治疗.本文对衣藻、纤毛及“纤毛相关疾病”的研究进展作一简短概述.  相似文献   

3.
大脑神经回路高度有序的神经元活动是高级脑功能的基础,神经元之间的突触联结是神经回路的关键功能节点。神经突触根据神经元活动调整其传递效能的能力,亦即突触可塑性,被认为是神经回路发育和学习与记忆功能的基础。其异常则可能导致如抑郁症和阿尔茨海默病等精神、神经疾病。将介绍这两种疾病与突触可塑性的关系,聚焦于相关分子和细胞机制以及新的研究、治疗手段等进展。  相似文献   

4.
人体内脏器官在位置及形态上呈左右不对称分布。纤毛在左右不对称发育中发挥关键作用。目前已鉴定数十个不对称发育相关的人类疾病基因,这些基因大多涉及纤毛发生、运动以及Nodal-Pitx2信号传导过程。文中主要介绍了纤毛影响Nodal-Pitx2信号通路导致人体左右不对称发育的过程。此外还简要阐述了纤毛与先天性心脏病的关系以及左右不对称发育人类遗传学研究的最新发现。这些进展将有助于我们深入了解左右不对称发育分子机制以及纤毛与人类疾病的联系。  相似文献   

5.
不对称性细胞分裂是一个母细胞通过一次分裂,产生两个不同命运的子细胞的分裂方式,是单细胞生物向多细胞生物进化的关键一步。根据现有的证据推论,不称性细胞分裂是在器官发育过程中产生细胞多样化的一种基本方式。Numb是第一个被发现决定多细胞生物不对称细胞分裂的信号蛋白。在果蝇中,Numb通过促进Notch泛素化拮抗Notch信号通路,从而决定子细胞的命运,后来的研究表明Numb是细胞内吞调节蛋白,并用通过内吞参与调节神经细胞的粘附,轴突的生长及细胞迁移等过程;并且发现Numb与肿瘤抑制基因p53、泛素化蛋白HDM2形成三聚体抑制p53的泛素化,从而调节肿瘤的恶性程度。本文系统地分析了Numb发现的历史及后来在脊椎动物中的作用和机制,重点介绍了Numb在神经发育过程中的功能。  相似文献   

6.
不对称性细胞分裂是一个母细胞通过一次分裂,产生两个不同命运的子细胞的分裂方式,是单细胞生物向多细胞生物进化的关键一步。根据现有的证据推论,不称性细胞分裂是在器官发育过程中产生细胞多样化的一种基本方式。Numb是第一个被发现决定多细胞生物不对称细胞分裂的信号蛋白。在果蝇中,Numb通过促进Notch泛素化拮抗Notch信号通路,从而决定子细胞的命运,后来的研究表明Numb是细胞内吞调节蛋白,并用通过内吞参与调节神经细胞的粘附,轴突的生长及细胞迁移等过程;并且发现Numb与肿瘤抑制基因p53、泛素化蛋白HDM2形成三聚体抑制p53的泛素化,从而调节肿瘤的恶性程度。本文系统地分析了Numb发现的历史及后来在脊椎动物中的作用和机制,重点介绍了Numb在神经发育过程中的功能。  相似文献   

7.
近年来,研究发现纤毛在生成或者形态的缺陷均能导致新生儿遗传性疾病。与其他细胞器不同的是,纤毛这一小的毛发状细胞器能在几乎所有的极性细胞表面上生成,而且功能非常多样化。纤毛在调节脊椎动物的发育和内环境的平衡起着相当重要的作用,而与纤毛相关基因的缺失则与一系列疾病相关,包括:Nephronophthisis、Joubert综合症、Meckel-Gruber综合症和BardetBiedl综合症等。结合最近的研究,本文主要对四类主纤毛相关疾病的基因进行归类总结。  相似文献   

8.
纤毛(cilia)是细胞表面的突起状细胞器,几乎存在于所有细胞表面,且广泛分布于组织和器官的上皮.纤毛由外部的纤毛膜和内部的轴丝组成,结构在进化上十分保守.根据微管组成和排列方式的不同,纤毛可分为9+2型运动纤毛与9+0型基本纤毛或非运动纤毛.作为一种特殊的感受器,纤毛通过影响细胞信号通路参与胚胎形成、心脏等内脏器官发育及人体重要生理活动.本课题组在国际上首次把前列腺素信号通路与纤毛生长及心脏发育相联系.研究发现,ABCC4/LKT前列腺素转运蛋白从细胞内运输前列腺素E2(PGE2)至细胞外,并通过结合位于纤毛膜上的G蛋白偶联受体EP4影响细胞内c AMP浓度,调节纤毛内运输蛋白的正向速率,进而调控纤毛生长与心脏等器官的左右不对称性发育.纤毛生长或功能缺陷会引发先天性心脏病、多囊肾、视网膜变性等多种疾病.本文主要介绍纤毛参与调控细胞内信号转导与器官发育及相关纤毛疾病.  相似文献   

9.
胚胎神经发育过程中,众多基因时空性表达及其表达产物相互作用形成精确的调控,其中某些基因表达质或量的改变会引起胚胎发育异常,导致先天畸形的发生.这一精确的基因表达调控过程是在转录及转录后等不同水平进行的.MicroRNAs(miRNAs),是这个基因调控大家族中新的成员.目前研究表明miRNAs在神经干细胞的不同发育阶段和哺乳动物脑发育过程中有不同的表达模式,这表明miRNAs可能在胚胎神经发育过程中起作用.本文就miRNAs在胚胎神经发育过程中的表达及功能作一综述.  相似文献   

10.
神经纤毛蛋白-1(neuropilin 1,Nrp1)是单次跨膜受体,属于Neuropilin家族。它是神经轴突导向因子3(semaphorin 3,Sema3)和血管内皮生长因子165(vascular endothelial growth factor 165,VEGF165)的特异性受体,既可调节神经系统中轴突的生长、导向和迁移,又与心血管系统的血管新生、病理性血管损伤的修复有关。另外,有大量研究表明Nrp1对肿瘤的发展起重要作用,提示Nrp1是肿瘤治疗的潜在靶点。最近,有研究发现Nrp1与肥胖诱导的胰岛素抵抗和脓毒症相关,揭示其在急、慢性炎症中的作用。我们在本文中综述了Nrp1的研究进展,以期更好的理解Nrp1在生理和病理情况下的功能。  相似文献   

11.
一氧化氮与神经疾病   总被引:4,自引:0,他引:4  
一氧化氮具有多种重要的生物学功能,生理条件下,它被认为是中枢神经系统的一种新的神经元信使。但在神经变性疾病和神经毒素的毒害作用中,NO代谢水平发生相应变化,并在神经疾病过程中起某些作用。  相似文献   

12.
哺乳动物进化过程中,大脑皮层逐渐增大增厚和脑容量增大,从而构成了脑神经环路复杂性的细胞生物学基础.皮层出现皱褶是非人类灵长类演化的重要特征.成体人脑大约由近860多亿个神经细胞组成,其中,在人脑神经发生高峰,每小时有近400多万个兴奋性神经细胞产生.如此高速的神经生成过程需要精确的细胞与分子调控机制.本文主要讨论调控大脑皮层增大增厚的细胞与分子机制和相关的脑发育疾病.  相似文献   

13.
Hippo通路是一个调控组织器官大小、细胞增殖、分化和凋亡的高度保守的信号通路.我们研究了氧化压力条件下Hippo通路在神经细胞中的作用,并发现哺乳动物STE20样的丝-苏氨酸蛋白激酶(MST1)可参与氧化应激诱导的神经细胞凋亡,其上游受非受体酪氨酸激酶c-Abl的调控.近期,我们研究发现MST1参与脑缺血引起的神经炎症,还发现Yes相关蛋白1(YAP)参与神经干细胞的自我更新.本文将介绍Hippo通路在中枢神经系统疾病和神经发育中的作用和机制研究的相关进展.  相似文献   

14.
MicroRNAs与疾病和发育   总被引:1,自引:0,他引:1  
作为模式生物实验系统,线虫可用于研究控制动物发育和人类疾病遗传机制。研究发育缺陷的线虫突变体有助于在动物中发现对发育和生理过程有重要调控作用的基因。其中一些基因编码一类小RNA,如microRNA(miRNA),通过作用于特定基因信使RNA来调控其蛋白质表达。一些在线虫发育过程中有功能的miRNA在人体中也存在。它们参与调控与疾病相关的生物学过程,如癌症、糖尿病和神经退行性疾病。通过分析miRNA在临床样品、哺乳动物细胞和模式生物线虫中的表达,从而揭示miRNA调控途径在相关人类疾病中的功能。  相似文献   

15.
刘亚兰  张华  冯永 《遗传》2014,36(11):1131-1144
综合征型耳聋(Syndromic hearing loss, SHL)现已报道400多种,大多数发病率低,临床常见的有Waardenburg综合征(WS)、先天性小耳畸形综合征、前庭导水管扩大综合征等。因SHL具有极强的临床和遗传异质性,所以对其遗传基础及发病机制的研究变得十分困难。以SOX10和PAX3为中心的基因作用网络引起的神经嵴细胞功能异常与WS、小耳畸形及前庭导水管扩大等表型相关。本课题组前期研究也证实该基因网络参与WS的发病机制。文章针对神经嵴发育异常导致相关综合征型耳聋的发病机制的研究进展进行了系统的阐述,分析并归纳了与综合征型耳聋发病相关的神经嵴发育异常基因互作网络,以期为系统地研究常见综合征型耳聋致病基因的定位克隆以及发病机制提供研究思路和理论基础。  相似文献   

16.
作为一种转录抑制因子,甲基化CpG结合蛋白2(MeCP2)含有结合甲基化DNA和转录抑制两个特征性的结构域,具有调节转录激活、调节染色体构象、参与RNA剪切等多种功能,在神经发育过程中起着重要的作用。近来的研究表明,MeCP2基因突变与Rett综合征、孤独症等多种神经发育性疾病相关,已成为研究基因型与人类神经发育性疾病关系的一个热点。就MeCP2在Rett综合征、孤独症及药物成瘾方面的进展作一综述。  相似文献   

17.
O-连接乙酰葡糖胺(O-GlcNAc)糖基化转移酶Ogt催化的O-GlcNAc糖基化修饰是一种重要的翻译后修饰形式. O-GlcNAc糖基化修饰通过调控蛋白质的功能而参与了多种生物学过程,并与多种疾病密切相关. O-GlcNAc修饰广泛存在于神经系统中,并在发育和衰老过程中表现出动态变化.既往研究表明, O-GlcNAc修饰对胚胎和成体神经发生,神经元的成熟、存活、突触发育和小鼠的认知能力等都发挥重要的调控作用.在多种神经发育和退行性疾病中,许多关键蛋白的O-GlcNAc修饰水平表现出显著改变.本文综述了O-GlcNAc糖基化修饰在神经发育和神经系统疾病中作用和分子机制的研究进展.  相似文献   

18.
脉络丛是位于脑室内的一种富含毛细血管的精细结构,内部为中央间质,外被单层立方上皮。脉络丛可分泌脑脊液,形成血脑脊液屏障,不仅促进中枢神经系统代谢废物的排泄,也为脑实质提供了重要的营养来源。脉络丛还在外周向中枢运输免疫细胞、炎症反应、神经发生和发育、昼夜节律和肠脑轴中发挥调节作用。大量研究发现脉络丛参与了多种神经发育和精神障碍疾病的发病。该文总结了脉络丛的结构、发育与生理功能,讨论了脉络丛在精神分裂症、孤独症、脑叶酸缺乏症、寨卡病毒引起的小头畸形、新型冠状病毒感染的神经并发症等神经发育和精神障碍疾病中的作用,提出了脉络丛在神经发育和精神障碍疾病中的诊疗价值,为防治这些疾病提供了新的思路和研究方向。  相似文献   

19.
长链非编码RNA(long non-coding RNA,lnc RNA)是指不具有编码蛋白能力且长度大于200nt的RNA,近年来,越来越多的lnc RNAs在多种生命活动中发挥着重要的作用。已有研究发现lnc RNAs在神经发育过程中起着重要的作用,lnc RNAs可以调控神经干细胞定向分化为神经元、胶质细胞、星状细胞,lnc RNAs,还参与调控神经干细胞的分化进程;lnc RNAs表达异常与神经疾病也有密切关系。本文就lnc RNAs在调控神经细胞分化进程和在神经性疾病作用的研究新进展进行综述。  相似文献   

20.
随着现代社会工业的发展,空气污染日益严重,空气污染对人体的损害也越来越大。空气污染中的有害物质,能通过各种途径引起各系统的疾病,甚至会影响儿童的身体和智力发育。研究发现,长期暴露或急性暴露在某些空气污染物中可以直接损伤中枢神经系统,或污染物引起呼吸系统和免疫系统等产生有害因子,通过外周循环到达大脑,导致大脑的神经炎症、神经毒性、氧化应激等反应,最终产生神经退行性病变,如阿尔茨海默病(Alzheimer’s disease,AD)、帕金森病(Parkinson’s disease,PD)等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号