首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Transbilayer distribution of phospholipids in bacteriophage membranes   总被引:1,自引:0,他引:1  
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A(2). We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

2.
We have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A2. We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid-protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms.  相似文献   

3.
Upon cold and drought stress, sucrose and trehalose protect membrane structures from fusion and leakage. Similarly, these sugars protect membrane proteins from inactivation during dehydration. We studied the interactions between sugars and phospholipid membranes in giant unilamellar vesicles with the fluorescent lipid analog 3,3′-dioctadecyloxacarbocyanine perchlorate incorporated. Using fluorescence correlation spectroscopy, it was found that sucrose decreased the lateral mobility of phospholipids in the fully rehydrated, liquid crystalline membrane more than other sugars did, including trehalose. To describe the nature of the difference in the interaction of phospholipids with sucrose and trehalose, atomistic molecular dynamics studies were performed. Simulations up to 100 ns showed that sucrose interacted with more phospholipid headgroups simultaneously than trehalose, resulting in a larger decrease of the lateral mobility. Using coarse-grained molecular dynamics, we show that this increase in interactions can lead to a relatively large decrease in lateral phospholipid mobility.  相似文献   

4.

Background

For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood.

Results

Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred.

Conclusion

This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents.  相似文献   

5.
The membrane lipids of six higher plants that differ in salt tolerance were analyzed and compared. The root lipids increased in a ratio of glycolipid/phospholipid with increasing salt- tolerance. A similar increase in the ratio was observed with increasing external salinity when halophytic orach and salt-sensitive cucumber were exposed to varying salinity, although the latter plant was limited to only a little increase. Measurements of ion-transport rates with artificial lipid membranes revealed that the root lipids from a salt-resistant plant formed a more permeable membrane than those from a salt-sensitive species. It was found that the membrane permeability was related to the glycolipid/phospholipid ratio in the membrane lipids, where the glycolipids were stimulative and the phospholipids were repressive for ion-flow. These different effects of the two lipid classes may be attributed to their molecular species and head groups.  相似文献   

6.
Phospholipids extracted from liver microsomes and mitochondria of ethanol-fed rats retained the resistance to membrane disordered by ethanol which is observed in the intact isolated membranes. The lipid extracts were separated into the major phospholipid classes (phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol from microsomes and phosphatidylcholine, phosphatidylethanolamine and cardiolipin from mitochondria) by preparative TLC. The extent of membrane disordering by ethanol of phospholipid vesicles composed of a mixture of phospholipids from ethanol-fed rats and controls was determined from the reduction of the order parameter of the spin-probe 12-doxyl-stearate. In contrast to previous reports, we found that all phospholipid classes from ethanol-fed rats confer resistance to disordering by ethanol. To a first approximation the extent of resistance was proportional to the fraction of lipids from ethanol-fed rats, regardless of the phospholipid head-group. Subtle differences between phospholipid classes may exist but were too small to measure accurately. Except for phosphatidylethanol, incorporation of anionic phospholipids did not have a significant effect on the sensitivity of phospholipid vesicles to the disordering effect of ethanol. Vesicles prepared from mixtures of various dioleoyl phospholipids and natural phospholipids did not indicate a clear effect of fatty acid saturation on the sensitivity to disordering by ethanol. Although the precise molecular changes that occur in phospholipids from ethanol-fed rats have not been fully characterized it appears that subtle changes in all phospholipid classes contribute to the resistance to ethanol disordering of these membranes.  相似文献   

7.
An accelerated degradation of phospholipid is the likely basis of irreversible cell injury in ischemia, and the membranes of the endoplasmic reticulum of the liver are a convenient system with which to study the effect of such a disturbance on the structure and function of cellular membranes. In the present report, electron spin resonance spectroscopy has been used to evaluate changes in the molecular ordering of microsomal membrane phospholipids in the attempt to relate the loss of lipid to alterations in membrane structure. The order parameter, S, was calculated from spectra reflecting the anisotropic motion of 12-doxyl stearic acid incorporated into normal and 3-h ischemic microsomal membranes. Over the temperature range 4-40 degrees C, the molecular order (S) of ischemic membranes was increased by 8-10%. This increase was reproduced in the ordering of the phospholipids in liposomes prepared from total lipid extracts of the same membranes. In contrast, after removal of the neutral lipids, liposomes prepared from phospholipids of ischemic and control membranes had the same molecular order. There were no differences in the phospholipid species of control and ischemic membranes or in the fatty acid composition of the phospholipids. In the neutral lipid fraction of ischemic membranes, however, triglycerides and cholesterol were increased compared to control preparations. There were no free fatty acids. The total cholesterol content of the liver was unchanged after 3 h of ischemia. The cholesterol-to-phospholipid ratio of ischemic membranes, however, was increased by 22% from 0.258 to 0.315 as a consequence of the loss of phospholipid. Addition of cholesterol to the control total lipid extracts to give a cholesterol-to-phospholipid ratio the same as in ischemic membranes resulted in liposomes with order parameters similar to those of liposomes prepared from ischemic total lipids. It is concluded that the degradation of the phospholipids of the microsomal membrane results in a relative increase in the cholesterol-to-phospholipid ratio. This is accompanied, in turn, by an increased molecular order of the residual membrane phospholipids.  相似文献   

8.
Transbilayer movement of phospholipids in biogenic membranes   总被引:7,自引:0,他引:7  
Biogenic membranes contain the enzymes that synthesize the cell's membrane lipids, of which the phospholipids are the most widespread throughout nature. Being synthesized at and inserted into the cytoplasmic leaflet of biogenic membranes, the phospholipids must migrate to the opposite leaflet to ensure balanced growth of the membrane. In this review, the current knowledge of transbilayer movement of phospholipids in biogenic membranes is summarized and the available data are compared to what is known about lipid translocation in other membranes. On the basis of this, a mechanism is proposed, in which phospholipid translocation in biogenic membranes is mediated via membrane-spanning segments of a subset of proteins, characterized by a small number of transmembrane helices. We speculate that proteins of this subset facilitate lipid translocation via the protein-lipid interface, because they display more dynamic behavior and engage in less stable protein-lipid interactions than larger membrane proteins.  相似文献   

9.
Amyloid deposits from several human diseases have been found to contain membrane lipids. Co-aggregation of lipids and amyloid proteins in amyloid aggregates, and the related extraction of lipids from cellular membranes, can influence structure and function in both the membrane and the formed amyloid deposit. Co-aggregation can therefore have important implications for the pathological consequences of amyloid formation. Still, very little is known about the mechanism behind co-aggregation and molecular structure in the formed aggregates. To address this, we study in vitro co-aggregation by incubating phospholipid model membranes with the Parkinson’s disease-associated protein, α-synuclein, in monomeric form. After aggregation, we find spontaneous uptake of phospholipids from anionic model membranes into the amyloid fibrils. Phospholipid quantification, polarization transfer solid-state NMR and cryo-TEM together reveal co-aggregation of phospholipids and α-synuclein in a saturable manner with a strong dependence on lipid composition. At low lipid to protein ratios, there is a close association of phospholipids to the fibril structure, which is apparent from reduced phospholipid mobility and morphological changes in fibril bundling. At higher lipid to protein ratios, additional vesicles adsorb along the fibrils. While interactions between lipids and amyloid-protein are generally discussed within the perspective of different protein species adsorbing to and perturbing the lipid membrane, the current work reveals amyloid formation in the presence of lipids as a co-aggregation process. The interaction leads to the formation of lipid-protein co-aggregates with distinct structure, dynamics and morphology compared to assemblies formed by either lipid or protein alone.  相似文献   

10.
Non-enzymatic glycation of biomolecules has been implicated in the pathophysiology of aging and diabetes. Among the potential targets for glycation are biological membranes, characterized by a complex organization of lipids and proteins interacting and forming domains of different size and stability. In the present study, we analyse the effects of glycation on the interactions between membrane proteins and lipids. The phospholipid affinity for the transmembrane surface of the PMCA (plasma-membrane Ca(2+)-ATPase) was determined after incubating the protein or the phospholipids with glucose. Results show that the affinity between PMCA and the surrounding phospholipids decreases significantly after phosphospholipid glycation, but remains unmodified after glycation of the protein. Furthermore, phosphatidylethanolamine glycation decreases by approximately 30% the stability of PMCA against thermal denaturation, suggesting that glycated aminophospholipids induce a structural rearrangement in the protein that makes it more sensitive to thermal unfolding. We also verified that lipid glycation decreases the affinity of lipids for two other membrane proteins, suggesting that this effect might be common to membrane proteins. Extending these results to the in vivo situation, we can hypothesize that, under hyperglycaemic conditions, glycation of membrane lipids may cause a significant change in the structure and stability of membrane proteins, which may affect the normal functioning of membranes and therefore of cells.  相似文献   

11.
Phospholipids and their acyl group composition are important in providing the proper membrane environment for membrane protein structure and function. In particular, the highly unsaturated phospholipids in synaptic plasma membranes in the CNS are known to play an important role in modulating receptor function and neurotransmitter release processes. Apolipoprotein E (apoE) is a major apolipoprotein in the CNS, mediating the transport of cholesterol, phospholipids and their fatty acids, particularly in reparative mechanisms during neuronal injury. This study was performed to determine whether deficiency in the apoE gene contributes to an alteration of the phospholipids in synaptic plasma membranes. Phospholipid molecular species were identified and quantitated by HPLC/electrospray ionization-mass spectrometry. Analysis of the different phospholipid classes in membranes of apoE-deficient and C57BL/6 J mice indicated no obvious differences in the distribution of different phospholipid classes but substantial differences in composition of phospholipid molecular species. Of special interest was the prevalence of phospholipids (phosphatidylcholine, diacyl-phosphatidylethanolamine, and phosphatidylserine) with 22:6n-3 in both the sn-1 and sn-2 positions of SPM and these phospholipid species were significantly higher in apoE-deficient mice as compared to control mice. Since polyunsaturated fatty acids in neurons are mainly supplied by astrocytes, these results revealed a new role for apoE in regulating polyunsaturated phospholipid molecular species in neuronal membranes.  相似文献   

12.
Considering membranes and membrane components as possible pacemakers of the main processes taking place inside mitochondria, changes in phospholipids or fatty acids could play a central role linking different mechanisms involved in cumulative damage to cell molecules and dysfunction during periods of high stress, such as rapid growth and aging. Changes affecting either lipid class or fatty acid compositions could affect phospholipid and membrane properties and alter mitochondrial function and cell viability. In the present study, mitochondrial oxidative status and mitochondrial membrane phospholipid compositions were analyzed throughout the life-cycle of zebrafish. TBARS content significantly increased in 18-month-old fish while aconitase activity decreased in 24-month-old fish, which have been related with oxidative damage to molecules. Mitochondria-specific superoxide dismutase decreased in 24-month-old animals although this change was not statistically significant. Age affected both mitochondrial phospholipid content and the peroxidation index of most phospholipid classes suggesting that oxidative damage to mitochondrial lipids was occurring.  相似文献   

13.
Catalá A 《Biochimie》2012,94(1):101-109
The “Fluid Mosaic Model”, described by Singer and Nicolson, explain both how a cell membrane preserves a critical barrier function while it concomitantly facilitates rapid lateral diffusion of proteins and lipids within the planar membrane surface. However, the lipid components of biological plasma membranes are not regularly distributed. They are thought to contain “rafts” - nano-domains enriched in sphingolipids and cholesterol that are distinct from surrounding membranes of unsaturated phospholipids. Cholesterol and fatty acids adjust the transport and diffusion of molecular oxygen in membranes. The presence of cholesterol and saturated phospholipids decreases oxygen permeability across the membrane. Alpha-tocopherol, the main antioxidant in biological membranes, partition into domains that are enriched in polyunsaturated phospholipids increasing the concentration of the vitamin in the place where it is most required. On the basis of these observations, it is possible to assume that non-raft domains enriched in phospholipids containing PUFAs and vitamin E will be more accessible by molecular oxygen than lipid raft domains enriched in sphingolipids and cholesterol. This situation will render some nano-domains more sensitive to lipid peroxidation than others. Phospholipid oxidation products are very likely to alter the properties of biological membranes, because their polarity and shape may differ considerably from the structures of their parent molecules. Addition of a polar oxygen atom to several peroxidized fatty acids reorients the acyl chain whereby it no longer remains buried within the membrane interior, but rather projects into the aqueous environment “Lipid Whisker Model”. This exceptional conformational change facilitates direct physical access of the oxidized fatty acid moiety to cell surface scavenger receptors.  相似文献   

14.
Unconjugated bilirubin increasingly binds to erythrocytes as the bilirubin-to-albumin molar ratio exceeds unity, leading to toxic manifestations that can culminate in cell lysis. Our previous studies showed that bilirubin induces the release of lipids from erythrocyte membranes. In the present work, those studies were extended in order to characterize the alterations of membrane lipid composition and evaluate whether bilirubin leads to a loss of phospholipid asymmetry. To this end, human erythrocytes were incubated with several bilirubin-to-albumin molar ratios (0.5 to 5), and cholesterol as well as the total and the individual classes of phospholipids were determined. To detect erythrocytes with phosphatidylserine at the outer surface, the number of annexin V-positive cells was determined following incubation with bilirubin, fixing its molar ratio to albumin at 3. The results demonstrate profound changes in erythrocyte membrane composition, including modified cholesterol and phospholipid content. The release of membrane cholesterol, as well as of total and individual classes of phospholipids at molar ratios ≥1, indicates that damage of erythrocytes may occur in severely ill jaundiced neonates. The loss of the inner-located phospholipids, phosphatidylethanolamine and phosphatidylserine, points to a redistribution of phospholipids in the membrane bilayer. This was confirmed by the exposure of phosphatidylserine at the outer cell surface. In conclusion, this study demonstrates that bilirubin induces loss of membrane lipids and externalization of phosphatidylserine in human erythrocytes. These features may facilitate hemolysis and erythrophagocytosis, thus contributing to enhanced bilirubin production and anemia during severe neonatal hyperbilirubinemia. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Lipids in the two surface membranes of Schistosoma mansoni may play an important role in the parasite's defense against host immunity. In particular, lysophosphatidylcholine lyses erythrocytes attached to the parasite and alters the lateral mobilities of their membrane proteins and lipids (Golan et al. 1986). Here, we have studied the incorporation of radiolabeled precursors into the major lipid classes of schistosomula as well as into lipids released by schistosomula into the medium. Radiolabeled polar head groups (choline and ethanolamine) and fatty acid precursors (palmitate and oleate) were linearly incorporated into parasite phospholipids. Fatty acids were differentially incorporated into the various phospholipid classes, principally into phosphatidylcholine and, to a lesser extent, into phosphatidylethanolamine, lysophosphatidylcholine, and phosphatidylserine. The major neutral lipid class labeled, triglycerides, had a decrease in specific activity with time after pulse labeling and the specific activity of the phospholipids increased with time. Thus, triglycerides may provide acyl chains for phospholipid synthesis. Choline was incorporated into phosphatidylcholine and lysophosphatidylcholine, and ethanolamine into phosphatidylethanolamine and lysophosphatidylethanolamine. No evidence was found for phospholipid methylation or demethylation in schistosomula. Labeled lipids were linearly and selectively released into the medium. Triglycerides were released at the highest rate with measurable quantities of phosphatidylcholine, lysophosphatidylcholine, and phosphatidylethanolamine also observed. Monopalmitoylphosphatidylcholine was the only lysophosphatidylcholine present in the medium as demonstrated by reverse-phase chromatography of released choline-labeled lysophosphatidylcholine. These studies demonstrate that schistosomula synthesize phospholipids and neutral lipids and release some of them into the culture medium. In particular, they release a single molecular species of a potent biologically active molecule, monopalmitoylphosphatidylcholine, that may play a role in the parasite's evasion of the immune response.  相似文献   

16.
Results from various surface sensitive characterization techniques suggest a model for the interaction of the piperidinopyrimidine dipyridamole (DIP)--known as a vasodilator and inhibitor of P-glycoprotein associated multidrug resistance of tumor cells--with phospholipid monolayers in which the drug is peripherally associated with the membrane, binding (up to) five phospholipids at a time. These multiple interactions are responsible for a very strong association of the drug with the lipid monolayer even at exceedingly low concentrations (approximately 0.2 mol%). Electrostatic interactions and hydrogen bonding are likely involved in the binding of DIP to DPPC. Cooperative effects among the lipids are invoked to explain the macroscopically measurable changes of lipid monolayer properties even when only one out of 100 DPPC molecules is directly associated with a DIP molecule. A reversal of the observed changes upon drug association with the membrane as the DIP concentration surpasses a threshold concentration (c(crit)approximately 0.5 mol%) may be explained by cooperativity in a different context, the self-aggregation of drug molecules. With its implications for the interaction of DIP with phospholipid films, this work provides a first approach to the explanation of the high sensitivity of cell membranes to piperidinopyrimidine drugs on a molecular level.  相似文献   

17.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

18.
There has been increasing interest in recent years in describing the lateral organization of membranes and the formation of membrane domains. Much of the focus in this area has been on the formation of cholesterol-rich domains in mammalian membranes. However, it is likely that there are domains in all biological membranes. One of the challenges has been to define the chemical composition, lifetime and size of these domains. There is evidence that bacteria have domains that are enriched in cardiolipin. In addition, the formation of lipid domains can be induced in bacteria by clustering negatively charged lipids with polycationic substances. Many antimicrobial compounds have multiple positive charges. Such polycationic compounds can sequester anionic lipids to induce lipid phase separation. The molecular interactions among lipids and their lateral packing density will be different in a domain from its environment. This will lead to phase boundary defects that will lower the permeability barrier between the cell and its surroundings. The formation of these clusters of anionic lipids may also alter the stability or composition of existing membrane domains that may affect bacterial function. Interestingly many antimicrobial agents are polycationic and therefore likely have some effect in promoting lipid phase segregation between anionic and zwitterionic lipids. However, this mechanism is expected to be most important for substances with sequential positive charges contained within a flexible molecule that can adapt to the arrangement of charged groups on the surface of the bacterial cell. When this mechanism is dominant it can allow the prediction of the bacterial species that will be most affected by the agent as a consequence of the nature of the lipid composition of the bacterial membrane.  相似文献   

19.
大鼠心肌线粒体内、外膜磷脂动态结构的研究   总被引:4,自引:2,他引:2  
我们以DPH为荧光探针.用毫微秒荧光分光光度计测定了大鼠心肌线粒体及线粒体内、外膜的动态微细结构;用HPLC分析了磷脂组成.实验结果提示.完整线粒体膜流动性主要反映了线粒体外膜的运动状态.线粒体内膜微粘度及磷脂分子摇动角大于外膜,扩散速率小于外膜.除去了蛋白质的线粒体内、外膜磷脂脂质体膜流动性无明显差异.提示线粒体内膜的高微粘度与膜中所含有的多量蛋白有关.  相似文献   

20.
The lipid composition of plasma membranes and tonoplasts from etiolated mung bean hypocotyls was examined in detail. Phospholipids, sterols, and ceramide monohexoside(s) were the major lipid classes in both membranes. The content of phospholipids on a protein basis was higher in the tonoplast, but the content of total sterols was similar in both membranes. Accordingly, the sterol to phospholipid molar ratio in the plasma membrane was higher than that of the tonoplast. Phosphatidylethanolamine and phosphatidylcholine comprised the major phospholipids in both membranes. Phosphatidylinositol, phosphatidylserine, and phosphatidylglycerol were identified as minor phospholipid components. The content of phosphatidylinositol and phosphatidylglycerol was relatively high in the tonoplast, comprising 11 and 5% of the total phospholipids, respectively. Although special care was taken against the degradative action of phospholipase D and phosphatidic acid phosphatase during the isolation of these membranes, by adding EDTA, EGTA, KF, choline, and ethanolamine to the homogenizing medium, significant amounts of phosphatidic acid, about 15% of the total phospholipids, were detected in the plasma membrane. On the other hand, the content of phosphatidic acid in tonoplasts and other membrane fractions was very low. This fact may indicate that high levels of phosphatidic acid occur naturally in plasma membranes. Phosphatidylglycerol in both membranes and phosphatidylinositol in the tonoplast contained high levels of palmitic acid, which comprised more than 50% of the total fatty acids. Significant differences were observed in the sterol compositions of plasma membranes and tonoplasts. More than 90% of the sterols in the plasma membrane were unesterified, while the tonoplast was enriched in glycosylated sterols, especially acylated sterylglycosides. Ceramide monohexoside was found to be specifically located in these membranes, in particular, in the tonoplast, in which it comprised nearly 17% of the total lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号