首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
Dear Editor,Lipid droplets(LDs)are dynamic lipid-storage organelles of storage depots and sources of essential substrates for myriad cellular processes and protect cells from lipotoxicity(Ohsaki et al.,2006).Disrupted LD and fat storage homeostasis has been linked to metabolic diseases such as atherosclerosis,obesity,and type II diabetes(Levin et al.,2001).Structurally,the core of neutral lipids in LDs is surroun ded by a phospholipid mono layer and coated with specific proteins(Storey et al.,2011).Perilipin family of proteins are the predominant LD-associated proteins.  相似文献   

2.
鸡解偶联蛋白(UCP)基因内含子的克隆与系统发生树的构建   总被引:2,自引:2,他引:0  
解偶联蛋白基因是新近发现的能够增加能量的消耗,与脂肪代谢和能量调控密切相关的一组基因。本研究根据小鼠UCP2基因的剪切方式,设计4对引物成功克隆测序了鸡UCP基因的全部5个内含子,发现都是GT-AG类型的内含子,鸡UCP基因的结构和小鼠的UCP2基因结构一致。以不同物种UCP基因的cds 区域序列和内含子2、内含子3序列进行系统发生树的构建,结果表明:以UCP基因cds区域序列构建的系统发生树与物种树是一致的,UCP基因可以作为研究动物群体系统演化研究的有效基因;但以内含子2与内含子3序列构建的系统发生树的结构则完全不是这样,与物种树的差别比较大。 Abstract:The UCP genes were the newly discovered genes that can increase the energy expenditure and involve in the metabolism of fat and regulation of energy.Four pairs of primers in chicken UCP exon region were designed to amplify the introns of chicken UCP gene according to the splice ways of the mouse UCP2 gene (Accession No.AF096288).The sequence results showed that the chicken UCP gene also had five GT-AG type introns.The molecular phylogenetic tree was constructed based on the sequence of cds,intron 2 and intron 3 region,respectively.The phylogenetic tree based on the UCP cds region was consistent with the species phylogenetic tree.This result implicated that UCP gene can be regarded as the useful gene for the study of animal phylogenesis.On the contrast,the phylogenetic tree based on the intron 2 and intron 3 region was different from the species phylogenetic tree,which showed that the evolution of intron and cds region is different.  相似文献   

3.
动物线粒体核质基因互作的研究进展   总被引:20,自引:2,他引:20  
赵兴波  吴常信  李宁 《遗传》2001,23(1):81-85
线粒体是重要的细胞器,为细胞的生命活动提供能量,线粒体的正常功能是核基因和线粒体基因共同作用维持的结果。线粒体DNA是动物细胞内唯一存在的核外遗传物质,线粒体DNA与核基因的相互作用维持着线粒体和线粒体内膜呼吸链氧化磷酸化的正常功能状态。本文就线粒体核质基因互作在人类疾病、衰老、细胞凋亡、氯霉素抗性、ANT、MnSOD、mtTFA的研究进展进行了综述。 Abstract:Mitochondria is the essential element for a cell,in which generates energy.The normal functions of a mitochondria are controlled by both mitochondrial genome and nuclear genome.Mitochondrial DNA is the only genome in the cytoplasmy of a cell,it encodes essential components of oxidative phosphorylation(OXPHOS)in mitochondrial inner membrane,generating cellular energy in the main form of adenosine triphosphate(ATP).In this paper,we reviewed the research development on interactions of nuclear and mitochondrial genes,including human disease and aging,apoptosis,chloromycetin resistance,ANT,MnSOD and mtTFA.  相似文献   

4.
植物防御系统中抗病相关基因的研究进展   总被引:1,自引:0,他引:1  
万里红  周奕华  陈正华 《遗传》2002,24(4):486-492
本文论述了植物防御系统中抗病相关基因(resistance gene,R基因)的研究进展。列表总结了迄今已克隆的R基因,并将其归为四种不同的类型。综述了不同基因表达产物-R蛋白在细胞中的定位及其相应的功能。此外,还对R基因编码区的多态性、R基因在染色体上排列方式以及R基因的进化与起源等问题进行了讨论。 Abstract:This review comments on recent advances in research of disease resistance genes(R Genes) in defence system of plants.The R genes cloned up to date are summarized and classified roughly into four classes listed in the Table 1.The location and the founction of the R proteins,i.e.,the expressed products of different R genes in the cells are reviewed.In addition,the polymophism of coding region of R genes,the different fashions of R gene arrangement on the chromosomes,and the evolution and origin of R genes are discussed.  相似文献   

5.
Most of the mitochondrial and chloroplastic proteins are synthesized in the cytosol as precursor proteins carrying an N-terminal targeting peptide (TP) directing them specifically to a correct organelle. However, there is a group of proteins that are dually targeted to mitochondria and chloroplasts using an ambiguous N-terminal dual targeting peptide (dTP). Here, we have investigated pattern properties of import determinants of organelle-specific TPs and dTPs combining mathematical multivariate data analysis (MVDA) with in vitro organellar import studies. We have used large datasets of mitochondrial and chloroplastic proteins found in organellar proteomes as well as manually selected data sets of experimentally confirmed organelle-specific TPs and dTPs from Arabidopsis thaliana. Two classes of organelle-specific TPs could be distinguished by MVDA and potential patterns or periodicity in the amino acid sequence contributing to the separation were revealed, dTPs were found to have intermediate sequence features between the organelle-specific TPs. Interestingly, introducing positively charged residues to the dTPs showed clustering towards the mitochondrial TPs in silico and resulted in inhibition of chloroplast, but not mitochondrial import in in vitro organellar import studies. These findings suggest that positive charges in the N-terminal region of TPs may function as an 'avoidance signal' for the chloroplast import.  相似文献   

6.
In obesity, persistent low-grade inflammation is considered as a major contributor towards the progression to insulin resistance and type 2 diabetes while in lean subjects the immune environment is non-inflammatory. Massive adipose tissue(AT) infiltration by pro-inflammatory M1 macrophages and several T cell subsets as obesity develops leads to the accumulation-both in the AT and systemically-of numerous pro-inflammatory cytokines, including interleukin-1β(IL-1β), tumor necrosis factor a, IL-17 and IL-6 which are strongly associated with the progression of the obese phenotype towards the metabolic syndrome. At the same time, anti-inflammatory M2 macrophages and Th subsets producing the antiinflammatory cytokines IL-10, IL-5 and interferon-γ, including Th2 and T-reg cells are correlated to the maintenance of AT homeostasis in lean individuals. Here, we discuss the basic principles in the control of the interaction between the AT and infiltrating immune cells both in the lean and the obese condition with a special emphasis on the contribution of pro-and antiinflammatory cytokines to the establishment of the insulinresistant state. In this context, we will discuss the current knowledge about alterations in the levels on pro-and antiinflammatory cytokines in obesity, insulin resistance and type 2 diabetes mellitus, in humans and animal models. Finally, we also briefly survey the recent novel therapeutic strategies that attempt to alleviate or reverse insulin resistance and type 2 diabetes via the administration of recombinant inhibitory antibodies directed towards some pro-inflammatory cytokines.  相似文献   

7.
The hrp (hypersensitive response and patho-genicity) gene clusters in Gram-negative phytopatho-genic bacteria determine hypersensitive response (HR) in non-host plants and pathogenicity in host plants of the bacteria[1—3]. An hrp gene cluster usually contains genes coding for the components of the type Ⅲ se-cretion pathway, effectors and the proteins that regu-late the productions and transportations of effectors[4]. Many effectors such as Harpins and Avr proteins are believed secreted by …  相似文献   

8.
Fluorescent reporter proteins that allow repeated switching between a fluorescent and a non-fluorescent state in response to specific wavelengths of light are novel tools for monitoring of protein trafficking and super-resolu- tion fluorescence microscopy in living organisms. Here, we describe variants of the reversibly photoswitchable fluores- cent proteins rsFastLime, bsDronpa, and Padron that have been codon-optimized for the use in transgenic Arabidopsis plants. The synthetic proteins, designated rsFastLIME-s, bsDRONPA-s, and PADRON C-s, showed photophysical properties and switching behavior comparable to those reported for the original proteins. By combining the 'positively switchable' PADRON C-s with the 'negatively switchable' rsFastLIME-s or bsDRONPA-s, two different fluorescent reporter proteins could be imaged at the same wavelength upon transient expression in Nicotiana benthamiana cells. Thus, co-localiza- tion analysis can be performed using only a single detection channel. Furthermore, the proteins were used to tag the RNA-binding protein AtGRP7 (Arabidopsis thaliana glycine-rich RNA-binding protein 7) in transgenic Arabidopsis plants. Because the new reversibly photoswitchable fluorescent proteins show an increase in signal strength during each pho- toactivation cycle, we were able to generate a large number of scans of the same region and reconstruct 3-D images of AtGRP7 expression in the root tip. Upon photoactivation of the AtGRP7:rsFastLIME-s fusion protein in a defined region of a transgenic Arabidopsis root, spreading of the fluorescence signal into adjacent regions was observed, indicating that movement from cell to cell can be monitored. Our results demonstrate that rsFastLIME-s, bsDRONPA-s, and PADRON C-s are versatile fluorescent markers in plants, Furthermore, the proteins also show strong fluorescence in mammalian cells including COS-7 and HeLa cells.  相似文献   

9.
10.
<正>Reactive oxygen species arise(ROS)in the mitochondria as byproducts of respiration and oxidase activity and have important roles in many physiological and pathophysiological conditions.The current literature indicate that excessive levels of ROS can cause oxidative stress and that lots of evidences link ROS and oxidative stress to the pathogenesis of type 2 diabetes mellitus(T2DM)and development of complications.Several studies have shown elevated extraand intracellular glucose concentrations result in oxidative stress both in animal models of diabetes and in diabetic patients[1].And ROS can contribute to the development and progression of diabetes and related complications by directly damaging DNA,proteins,and lipids or indirectly activating a number of cellular stress-sensitive pathways to induce damage to tissues such as isletβcells[2].  相似文献   

11.
The term 'uncoupling protein' was originally used for the mitochondrial membrane protein UCP1, which is uniquely present in mitochondria of brown adipocytes, thermogenic cells that regulate body temperature in small rodents, hibernators and mammalian newborns. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP-synthase resulting in a futile proton cycling and dissipation of oxidation energy as heat. Recent identification of new homologues to UCP1 expressed in brown and white adipose tissue, muscle, brain and other tissues together with the hypothesis that these novel uncoupling proteins (UCPs) may regulate thermogenesis and/or fatty acid metabolism and furthermore may protect against free radical oxygen species production have generated considerable optimism for rapid advances in the identification of new targets for pharmacological management of complex pathological syndromes such as obesity, type 2 diabetes or chronic inflammatory diseases. However, since the physiological and biochemical roles of the novel UCPs are not yet clear, the main challenge today consists first of all in providing mechanistic explanation for their functions in cellular physiology. This lively awaited information may be the basis for potential pharmacological targeting of the UCPs in future.  相似文献   

12.
Damon M  Vincent A  Lombardi A  Herpin P 《Gene》2000,246(1-2):133-141
Uncoupling proteins (UCPs) facilitate proton transport inside the mitochondria and decrease the proton gradient, leading to heat production. Until now, the presence of UCP1 or other UCP homologs had not been detected in tissues of pig, a species where evidence for the presence of brown adipose tissue has only been provided in 2-3 month old animals. In the light of the improving knowledge on the UCPs family, we decided to examine both UCP2 and UCP3 mRNA expression in piglet skeletal muscle and adipose tissue. Using RT-PCR we have successfully cloned a partial UCP2 sequence and a complete UCP3 cDNA. UCP3's open reading frame (936bp) shares 90, 89 and 85% similarity with bovine, human and rat UCP3 nucleotide sequences, respectively. In 3-5 day old piglets, these genes are expressed in adipose tissue and in both longissimus thoracis (LT) and rhombo?deus (RH) muscles, without any effect of muscle metabolic type. This is in good agreement with the measurement of the same membrane potential in mitochondria isolated from both types of muscles. In triiodothyronine-treated piglets, UCP3 mRNA is more expressed in LT than in RH muscle. These genes may be involved in the control of the energy metabolism of the piglet.  相似文献   

13.
GDP在体外对大鼠脑线粒体脱耦联蛋白活性和表达的影响   总被引:1,自引:0,他引:1  
Xia C  Liu JZ  Xu Y 《生理学报》2008,60(4):492-496
本研究通过GDP体外处理大鼠脑组织块,观察GDP对脑线粒体脱耦联蛋白(uncoupling proteins,UCPs)活性、UCP4和UCP5表达的影响,以探讨嘌呤核苷酸对大鼠脑UCPs的调节作用.取Sprague-Dawley大鼠双侧大脑半球,将脑组织切成约8-10 mm3的脑组织块,与含1 mmol/L GDP的孵育介质共孵育30 min后,匀浆并差速离心分离提取大鼠脑组织线粒体,采用[3H]-GTP结合法测定UCPs活性,并以Scatehard作图法计算两者结合的解离常数(Kd)和最大结合量(Bmax);RT-PCR和Western blot分别检测UCP4和UCP5的mRNA和蛋白表达.结果显示,1 mmol/L GDP可降低体外大鼠脑组织线粒体中UCPs与[3H]-GTP结合的Bmax,提高Kd,但对脑纰织中UCP4和UCP5 mRNA和蛋白表达量的改变无统计学意义.上述结果提示,GDP可直接抑制体外大鼠脑组织中UCPs的活性,但并不影响UCP4和UCP5的表达.  相似文献   

14.
Uncoupling proteins (UCP1, UCP2 and UCP3) are important in regulating cellular fuel metabolism and as attenuators of reactive oxygen species production through strong or mild uncoupling. The generic function and broad tissue distribution of the uncoupling protein family means that they are increasingly implicated in a range of pathophysiological processes including obesity, insulin resistance and diabetes mellitus, neurodegeneration, cardiovascular disease, immunity and cancer. The significant recent progress describing the turnover of novel uncoupling proteins, as well as current views on the physiological roles and regulation of UCPs, is outlined.  相似文献   

15.
Mechanistic studies on uncoupling proteins (UCPs) not only are important to identify their cellular function but also are pivotal to identify potential drug targets to manipulate mitochondrial energy transduction. So far, functional and comparative studies of uncoupling proteins in their native environment are hampered by different mitochondrial, cellular and genetic backgrounds. Artificial systems such as yeast ectopically expressing UCPs or liposomes with reconstituted UCPs were employed to address crucial mechanistic questions but these systems also produced inconsistencies with results from native mitochondria. We here introduce a novel mammalian cell culture system (Human Embryonic Kidney 293 - HEK293) to study UCP1 function. Stably transfected HEK293 cell lines were derived that contain mouse UCP1 at concentrations comparable to tissue mitochondria. In this cell-based test system UCP1 displays native functional behaviour as it can be activated with fatty acids (palmitate) and inhibited with purine nucleotides guanosine-diphosphate (GDP). The catalytic centre activity of the UCP1 homodimer in HEK293 is comparable to activities in brown adipose tissue supporting functionality of UCP1. Importantly, at higher protein levels than in yeast mitochondria, UCP1 in HEK293 cell mitochondria is fully inhibitable and does not contribute to basal proton conductance, thereby emphasizing the requirement of UCP1 activation for therapeutic purposes. These findings and resulting analysis on UCP1 characteristics demonstrate that the mammalian HEK293 cell system is suitable for mechanistic and comparative functional studies on UCPs and provides a non-confounding mitochondrial, cellular and genetic background.  相似文献   

16.
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer.Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state.  相似文献   

17.
18.
Mitochondrial UCPs: new insights into regulation and impact   总被引:6,自引:0,他引:6  
Uncoupling proteins (UCPs) are mitochondrial inner membrane proteins sustaining an inducible proton conductance. They weaken the proton electrochemical gradient built up by the mitochondrial respiratory chain. Brown fat UCP1 sustains a free fatty acid (FA)-induced purine nucleotide (PN)-inhibited proton conductance. Inhibition of the proton conductance by PN has been considered as a diagnostic of UCP activity. However, conflicting results have been obtained in isolated mitochondria for UCP homologues (i.e., UCP2, UCP3, plant UCP, and protist UCP) where the FFA-activated proton conductance is poorly sensitive to PN under resting respiration conditions. Our recent work clearly indicates that the membranous coenzyme Q, through its redox state, represents a regulator of the inhibition by PN of FFA-activated UCP1 homologues under phosphorylating respiration conditions. Several physiological roles of UCPs have been suggested, including a control of the cellular energy balance as well as the preventive action against oxidative stress. In this paper, we discuss new information emerging from comparative proteomics about the impact of UCPs on mitochondrial physiology, when recombinant UCP1 is expressed in yeast and when UCP2 is over-expressed in hepatic mitochondria during steatosis.  相似文献   

19.
Uncoupling proteins (UCPs) located in the inner mitochondrial membrane are involved in the regulation of energy balance. Thus far, 5 UCP isoforms have been identified, but controversies exist in the research focused on the function of the UCPs (except UCP1) in the pathogenesis of obesity. Because of the known cross-reactivity of the antibodies presently available for the detection of UCP proteins, this study systematically analyzed the differential tissue expression profiles of the 5 UCP isoforms in lean control mice and ob/ob mice by using real-time polymerase chain reaction (PCR) analysis. The results show that the tissue-specific expression patterns of individual isoforms in normal and ob/ob mice are considerably different; this will provide new insights into the functions of UCPs in the pathogenesis of genetic obesity.  相似文献   

20.
Uncoupling proteins (UCPs) are a proton transporter family located in the mitochondrial inner membrane. Thus far, five molecules (UCP1–UCP5) have been identified as members of the UCP family. Recently, UCPs have attracted considerable interest in research on energy metabolism and obesity. However, to date, no study has focused on a comprehensive and systematic evaluation of the tissue-specific distribution of UCPs in obese individuals. Our study presents evidence of differential tissue expression profiles of five isoforms of UCPs in normal and diet-induced obese (DIO) rats using real-time polymerase chain reaction (PCR) analysis. The results clearly show that the tissue-specific expression patterns of individual isoforms between DIO and normal rats are quite distinct, which suggests a close relationship between the alterations in UCP expression and dietary obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号