首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoautotrophic bacteria have developed mechanisms to maintain K+ homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K+ uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K+ (Kdp). The contributions of each of these K+ transport systems to cellular K+ homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K+ uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K+ uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K+ depletion. Correspondingly, Kdp-mediated K+ uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K+ required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K+ concentration under conditions of limited K+ in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K+ availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K+ levels under fluctuating environmental conditions.  相似文献   

2.
The rod cells in frog taste discs display the outward current and maintain the negative resting potential in the condition where internal K+ is replaced with Cs+. We analyzed the properties of the Cs+-permeable conductance in the rod cells. The current–voltage (I/V) relationships obtained by a voltage ramp were bell-shaped under Cs+ internal solution. The steady state I/V relationships elicited by voltage steps also displayed the bell-shaped outward current. The activation of the current accelerated with the depolarization and the inactivation appeared at positive voltage. The gating for the current was maintained even at symmetric condition (Cs+ external and internal solutions). The wing cells did not show the properties. The permeability for K+ was a little larger than that for Cs+. Internal Na+ and NMDG+ could not induce the bell-shaped outward current. Carbenoxolone inhibited the bell-shaped outward Cs+ current dose dependently (IC50: 27 μM). Internal arachidonic acid (20 μM) did not induce the linear current–voltage (I–V) relationship which is observed in two-pore domain K+ channel (K2P). The results suggest that the resting membrane potentials in the rod cells are maintained by the voltage-gated K+ channels.  相似文献   

3.
Reducing Na+ accumulation and maintaining K+ stability in plant is one of the key strategies for improving salt tolerance. AtHKT1;1 and AtSOS1 are not only the salt tolerance determinants themselves, but also mediate K+ uptake and transport indirectly. To assess the contribution of AtHKT1;1 and AtSOS1 to Na+ homeostasis and K+ nutrition in plant, net Na+ and K+ uptake rate, Na+ and K+ distributions in Arabidopsis thaliana wild type (WT), hkt1;1 mutant (athkt1;1) and sos1 mutant (atsos1) were investigated. Results showed that under 2.5 mM K+ plus 25 or 100 mM NaCl, athkt1;1 shoot concurrently accumulated more Na+ and less K+ than did WT shoot, suggesting that AtHKT1;1 was critical for controlling Na+ and K+ distribution in plant; while atsos1 root accumulated more Na+ and absorbed lower K+ than did WT root, implying that AtSOS1 was determiner of Na+ excretion and K+ acquisition. Under 0.01 mM K+, athkt1;1 absorbed lower Na+ than did WT with 100 mM NaCl, suggesting that AtHKT1;1 is involved in Na+ uptake in roots; while atsos1 shoot accumulated less Na+ than did WT shoot no matter with 25 or 100 mM NaCl, implying that AtSOS1 played a key role in controlling long-distance Na+ transport from root to shoot. We present a model in which coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in A. thaliana under salt stress: under the normal K+, the major function of AtHKT1;1 is Na+ unloading and AtSOS1 is mainly involved in Na+ exclusion, whereas under the low K+, AtHKT1;1 may play a dominant role in Na+ uptake and AtSOS1 may be mainly involved in Na+ loading into the xylem.  相似文献   

4.
A factorial experiment was designed to study the effects of Mg2+, K+, and Na+ on the growth and biochemistry of Chlorella sorokiniana. Raising Mg2+ or K+ concentration in the nutrient medium increased growth rates as well as total N levels and Mg2+ and K+ accumulation by the cells. The total N effect was Mg2+-dependent—if Mg2+ was below a certain level in the medium—increasing the K+ concentration did not raise the total N level of cells. Low nutrient levels of K+ decreased the levels of unsaturated fatty acids (especially 18:1 and 18:3), while increasing the levels of palmitic acid (16:0), total fatty acids, and total lipid. Increasing nutrient K+ concentrations were accompanied by increases in levels of some unsaturated fatty acids, with a concomitant reduction in 16:0, total fatty acids and total lipid. Low Mg2+ levels in the nutrient medium reduced the cellular levels of palmitic acid, total fatty acids, total lipid, and certain unsaturated fatty acids (though this last effect also depended on the nutrient level of K+). These relationships indicate that Mg2+ may be important in the initial steps of fatty acid synthesis, whereas K+ may be necessary for the formation of certain unsaturated fatty acids. Variations in Na+ concentration did not have any significant effect on the growth and biochemistry of C. sorokiniana.  相似文献   

5.
Rb+ transport in low-K+ cells of Neurospora crassa is biphasic, transport at millimolar Rb+ being added to a transport process which saturates in the micromolar range. Both processes exhibit Michaelis-Menten kinetics, but in the micromolar phase the kinetic parameters depend on the K+ content of the cell (the lower the K+ content the lower the Km and the higher the Vmax). Normal-K+ cells, suspended in a buffer with millimolar K+, do not present Rb+ transport in the micromolar range. Millimolar transport in these cells presents kinetics which depend on the K+ in buffer (the higher the K+ the higher the Km), although the K+ content of the cells is constant. Na+ inhibits competitively Rb+ transport in low-K+ and normal-K+ cells, but, even when the differences between the Rb+Km values are more than three orders of magnitude, the apparent dissociation constant for Na+ is the same, and millimolar, in both cases.  相似文献   

6.
The Na,+ Cl-, and K+ content of toad plasma and the sartorius muscle has been determined. Although the Na+ and Cl- level of the muscles in the living animal varied greatly (0 to 38.0 m.eq. per kg., and 0 to 31.8 m.eq. per kg. respectively) the K+ level was subject to a smaller variation (76.5 to 136 m.eq. per kg.). There was a direct relationship between Na+ and Cl-, which was independent of the K+ level. There is a closely related gain of Na+ and Cl- when muscle is soaked in normal Ringer. These gains are not related to the K+ loss, frequently found on soaking. The relationship between the three ions was studied in a large series of 124 muscles in normal Ringer. As found in vivo, there was a correlation between Na+ and Cl.- This correlation was independent of K+ content, except when this was abnormally low. Alteration of the external NaCl level produced concomitant changes in the internal levels of these ions. Alteration of the external KCl level produced an increase in internal Cl- similar to that found with high NaCl solutions, but the amount of K+ entering the cell was approximately one-third of the external increase. Removal of K+ from the external solution did not result in a loss of K+ from the cell, although there was an adequate amount of Cl- present to accompany it. The results cannot be reconciled with either a Donnan concept for the accumulation of K+, or a linked carrier system. A theory is proposed to account for the ionic differentiation within the cell. The K+ is assumed to be adsorbed onto an ordered intracellular phase. The normal metabolic functioning of the cell is necessary to maintain the specificity of the adsorption sites. There is another intracellular phase, which lacks the structural specificity for K+, and which contains Na+, Cl-, and K+ in equilibrium with the external solution. The dimensions of the free intracellular phase will vary from cell to cell, but it will be smaller in the intact animal, and will increase on soaking in normal Ringer, until it is approximately one-third of the total cellular volume. The increase in this phase may be ascribed to a decrease in the energy available to maintain the ordered phase.  相似文献   

7.
Extracts prepared from embryonic eye tissue permit all of the neurons present in embryonic ciliary ganglia to survive and develop in cell culture. High K+ concentrations stimulate growth of the neurons in culture above the maximal levels obtained with eye extract alone. Growth in 25 mM K+ produced parallel increases in the levels of choline acetyltransferase activity, lactate dehydrogenase activity (a common cytoplasmic enzyme), and total protein synthesis per neuron. The K+ effect appears to be mediated by membrane depolarization. Intracellular recording confirmed that the neurons were chronically depolarized in 25 mM K+. Veratridine produced the same stimulation of growth, while tetrodotoxin blocked the veratridine effect without preventing the K+ effect. Ca2+ may also play a role in the K+ effect. Two drugs thought to block Ca2+ channels (Mg2+ and D600) each blocked or reduced in the increase in growth caused by 25 mM K+. The drugs did not interfere with neuronal growth in control cultures, indicating that eye extract and membrane depolarization influence neuronal growth by different mechanisms.  相似文献   

8.
A purified pectate lyase isozyme derived from Erwinia chrysanthemi induced rapid net K+ efflux and H+ influx in suspension-cultured tobacco cells. Comparable fluxes of other ions (Na+, Cl) were not observed. The K+ efflux/H+ influx response began within 15 minutes after addition of enzyme to cell suspensions and continued for approximately 1 hour after which cells resumed the net H+ efflux exhibited prior to enzyme treatment. The response was not prolonged by a second enzyme dose 1 hour after the first. The K+/H+ response was characterized by saturation at low enzymic activity (2 × 10−3 units per milliliter), and inhibition by the protonophore, carbonyl cyanide m-chlorophenylhydrazone, and was not associated with membrane leakiness caused by structural cell wall damage. The total K+ loss and H+ uptake induced by enzyme was one-fourth to one-third that induced by Pseudomonas syringae pv. pisi and did not reduce cell viability. These results indicate that pectate lyase induces a K+ efflux/H+ influx response in tobacco similar to but of shorter duration than that induced by P. syringae pv. pisi during the hypersensitive response. Pectate lyase or other cell wall degrading enzymes may therefore influence the induction of hypersensitivity.  相似文献   

9.
The K+-stimulated phosphatase activity of microsomes from rat kidney was not inhibited by l-phenylalanine, but the HCO3?-stimulated phosphatase activity was markedly inhibited by l-phenylalanine. Valinomycin enhanced the HCO3?-stimulated phosphatase activity, but did not enhance the K+-stimulated phosphatase activity. Ouabain did not inhibit the HCO3?-stimulated phosphatase activity, but inhibited the K+-stimulated phosphatase activity.The renal K+-stimulated phosphatase activity was suppressed to 40% of the control values by adrenalectomy, but the renal HCO3?-stimulated phosphatase activity was little suppressed by adrenalectomy. The renal K+-stimulated phosphatase activity in intact and adrenalectomized rats was found to be significantly elevated, in a manner similar to the elevation of the renal (Na+ + K+)-ATPase activity by aldosterone treatment (P < 0.02).  相似文献   

10.
Effects of extracellular potassium (K+) concentration in maturation media on the meiotic and cytoplasmic maturation of porcine oocytes were examined. Oocyte-cumulus cell complexes or cumulus cell denuded oocytes were cultured in Whitten's medium containing 0, 3, 6, 12 or 16 mM potassium. Absence of K+ in the media did not inhibit germinal vesicle breakdown (GVBD) in cumulus intact oocytes, but significantly decreased the frequency of meiotic maturation. In cumulus cell denuded oocytes, both GVBD and meiotic maturation were inhibited in K+-free medium. Millimole concentrations of K+ channel blockers, 4-aminopyridine or tetraethyl ammonium chloride inhibited GVBD and almost completely suppressed progression of meiotic maturation. The effect of varying the concentration of K+ on cytoplasmic maturation of pig oocytes was evaluated by the ability to form a male pronucleus after in vitro fertilisation. The percentage of sperm penetration or monospermic penetration was not different among treatments (P > 0.1). However, male pronuclear formation in oocytes in medium with 6 mM K+ was higher than in media with 12 and 16 mM K+. These results suggest that extracellular K+ is required for GVBD and meiotic maturation, and high concentrations (12 or 16 mM) of K+ in maturation media impair cytoplasmic maturation.  相似文献   

11.
To elucidate the purpose of butterfly puddling, we measured the amounts of Na+, K+, Ca2+, and Mg2+ that were absorbed or excreted during puddling by male Japanese Papilio butterflies through a urine test. All of the butterflies that sipped water with a Na+ concentration of 13 mM absorbed Na+ and excreted K+, although certain butterflies that sipped solutions with high concentrations of Na+ excreted Na+. According to the Na+ concentrations observed in naturally occurring water sources, water with a Na+ concentration of up to 10 mM appears to be optimal for the health of male Japanese Papilio butterflies. The molar ratio of K+ to Na+ observed in leaves was 43.94 and that observed in flower nectars was 10.93. The Na+ amount in 100 g of host plant leaves ranged from 2.11 to 16.40 mg, and the amount in 100 g of flower nectar ranged from 1.24 to 108.21 mg. Differences in host plants did not explain the differences in the frequency of puddling observed for different Japanese Papilio species. The amounts of Na+, K+, Ca2+, and Mg2+ in the meconium of both male and female butterflies were also measured, and both males and females excreted more K+ than the other three ions. Thus, the fluid that was excreted by butterflies at emergence also had a role in the excretion of the excessive K+ in their bodies. The quantities of Na+ and K+ observed in butterfly eggs were approximately 0.50 μg and 4.15 μg, respectively; thus, female butterflies required more K+ than male butterflies. Therefore, female butterflies did not puddle to excrete K+. In conclusion, the purpose of puddling for male Papilio butterflies is not only to absorb Na+ to correct deficiencies but also to excrete excessive K+.  相似文献   

12.
The cation content of Bifidobacterium bifidum subsp. pennsylvanicum was markedly influenced by the washing procedure of the cells, by the growth phase and the temperature, and by the composition of the culture medium. Optimal retention of cations was achieved by washing with 0.25 M MgCl2 at 20 C. The intracellular Na+ concentration rose during growth in normal medium to a constant value in the stationary phase, the K+ concentration rose in the exponential phase, but fell in the stationary phase. Cells from 29-C cultures contained more Na+ and less K+ in the stationary phase than did cells from 37-C cultures, but the total cation content was the same at 29 and 37 C.Intracellular Na+ and K+ concentrations were dependent on the concentrations in the medium and on its osmolarity. The intracellular Na+/K+ ratio varied from 0.04 to 2.3. The concentrations of Na+, K+ and phosphate in the medium hardly affected growth. Mg2+-deficiency of the medium markedly decreased the concentration of Mg2+ within the cell; its concentration in the cell sap was greatly affected, but the amount of sedimentable, bound Mg2+ only slightly. The content of K+ within the cell decreased in Mg2+-deficient medium, but the concentration of Na+ did not. Omission of Tween 80 as well as its substitution by Tween 20 caused a decrease of intracellular K+. Cells from Tween 40 and Tween 60 cultures additionally contained markedly less Na+.The present investigations have been carried out with financial support from the Netherlands Organization for the Advancement of Pure Research (ZWO) through the Netherlands Foundation for Chemical Research (SON).  相似文献   

13.
Determinations were made for corn (Zea mays L., WF9-Tms × M14) mitochondria of the stoichiometric relationship between K+ transport and bond energy produced in respiration (K+/~ ratio). With inward pumping of potassium acetate activated by NADH oxidation, the initial rate of K+ transported into the sucrose inaccessible space varied between 0.58 and 0.97 K+/~, assuming 2 high energy bond equivalents per NADH oxidized. Only small amounts of H+ were ejected. Valinomycin did not alter the ratio.  相似文献   

14.
The kinetic response of swine erythrocyte (Na + K)-ATPase to Na+ concentration was hyperbolic in low KCl (5–25 mm) but became increasingly sigmoidal (n = 2.2) as KCl was increased to 150 mm. The addition of 150 mm LiCl did not cause an increase in sigmoidicity although it decreased the apparent affinity for Na+. The dependence of ouabain-inhibited efflux of Na+ on internal Na+ concentration was measured in intact cells with intracellular cation concentrations altered by incubation in p-ehloromercuriphenyl sulfonate. The response to Na+ was sigmoidal (n = 2.2) in cells containing high K+ but hyperbolic in preparations in which most of the intracellular K+ was replaced by Li+, even in the presence of 150 mm external KCl. The data are consistent with a model in which internal K+ is an allosteric (feedback) inhibitor of Na+ efflux and there are three Na+ sites which interact cooperatively.  相似文献   

15.
The rhythmic movement of darkened Albizzia leaflets is accompanied by K+ flux in pulvinule motor cells whose turgor changes control opening and closing. The azide-sensitive open phase is promoted by an increase in temperature from 16 to 33C (Q10 = 3), implying active transport of K+ ions during this period. The azide-insensitive closed phase is less temperature-sensitive and has a Q10 less than 1, implying diffusion or some other physical process as the predominant pathway of K+ flux at this time. Thus rhythmic leaflet movement is probably due to oscillation in active K+ transport or membrane permeability or both. External electrolytes (0. 1 n) alter leaflet angle during the open, but not the closed, phase of the rhythm. All chlorides except NH4+ promote opening, with divalent more effective than monovalent ions. Some anions promote and others inhibit opening; activity is not correlated with charge. It is likely that electrolytes alter leaflet movement by altering K+ flux, accomplishing this by interacting with key macromolecules in motor cell membranes.  相似文献   

16.
Treatment of a purified (Na+ + K+)-ATPase preparation from dog kidney with digitonin reduced enzymatic activity, with the (Na+ + K+)-ATPase reaction inhibited more than the K+-phosphatase reaction that is also catalyzed by this enzyme. Under the usual assay conditions oligomycin inhibits the (Na+ + K+)-ATPase reaction but not the K+-phosphatase reaction; however, treatment with digitonin made the K+-phosphatase reaction almost as sensitive to oligomycin as the (Na+ + K+)-ATPase reaction. The non-ionic detergents, Triton X-100, Lubrol WX and Tween 20, also conferred sensitivity to oligomycin on the K+-phosphatase reaction (in the absence of oligomycin all these detergents, unlike digitonin, inhibited the K+-phosphatase reaction more than the (Na+ + K+)-ATPase reaction). Both digitonin and Triton markedly increased the K0.5 for K+ as activator of the K+-phosphatase reaction, with little effect on the K0.5 for K+ as activator of the (Na+ + K+)-ATPase reaction. In contrast, increasing the K0.5 for K+ in the K+-phosphatase reaction by treatment of the enzyme with acetic anhydride did not confer sensitivity to oligomycin. Both digitonin and Triton also increased the inhibition of the K+-phosphatase reaction by ATP and decreased the inhibition by inorganic phosphate and vanadate. These observations are interpreted as digitonin and Triton favoring the E1 conformational state of the enzyme (manifested by sensitivity to oligomycin and a greater affinity for ATP at the low-affinity substrate sites), as opposed to the E2 state (manifested by insensitivity to oligomycin, greater sensitivity to phosphate and vanadate, and a lower K0.5 for K+ in the K+-phosphatase reaction). In addition, digitonin blocked activation of the phosphatase reaction by Na+ plus CTP. This effect is consistent with digitonin dissociating the catalytic subunits of the enzyme, the interaction of which may be essential for activation by Na+ plus nucleotide.  相似文献   

17.
The existence of a subsarcolemmal space with restricted diffusion for Na+ in cardiac myocytes has been inferred from a transient peak electrogenic Na+-K+ pump current beyond steady state on reexposure of myocytes to K+ after a period of exposure to K+-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na+ that accumulated in the diffusion-restricted space during pump inhibition in K+-free extracellular solution. However, there are no known physical barriers that account for such restricted Na+ diffusion, and we examined if changes of activity of the Na+-K+ pump itself cause the transient peak current. Reexposure to K+ reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na+ concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K+-free pipette solution could not be reconciled with restricted subsarcolemmal Na+ diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na+- and K+ concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na+-K+ pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na+-K+ pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K+-induced peak Na+-K+ pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K+-induced peak Na+-K+ pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na+.  相似文献   

18.
Wrona AF  Epstein E 《Plant physiology》1985,79(4):1068-1071
The commercial tomato, lycopersicon esculentum Mill. cv Walter, and its wild relative, Lycopersicon cheesmanii ssp. minor (Hook.) C.H. Mull., were grown for 30 days under controlled conditions and in solution culture varying in its content of Na+ and K+. Subsequently, 86Rb-labeled K+ uptake and distribution were studied. From all solutions, `Walter' consistently absorbed 86Rb-labeled K+ at a higher rate in micromoles per gram fresh weight per 30 minutes than L. cheesmanii. L. cheesmanii distributed a greater proportion of the absorbed K+ from its root to its shoot. When 0.6 millimolar NaNO3 replaced 0.6 millimolar KNO3 in the pretreatment solution, intact plants of both genotypes followed a similar pattern as when they were pretreated with K+ only, but a greater percentage of the absorbed K+ remained in the roots. Leaf slices of L. cheesmanii plants deprived of K+ for 6 days showed a greater rate of K+ uptake than did slices from `Walter' plants pretreated the same way. Stem slices of L. cheesmanii, however, had a lower uptake rate than did those of `Walter'. Both leaf and stem slices of `Walter' plants, pretreated 6 days with 0.6 millimolar NaNO3 substituting for 0.6 millimolar KNO3 in their growth medium, had greater rates of 86Rb-labeled K+ uptake from 0.5 and 20 millimolar KCl solutions than did slices of L. cheesmanii. These marked differences in patterns of ion uptake and translocation indicate that these genotypes of tomato have evolved different mechanisms to deal with K+ and Na+ in their environments.  相似文献   

19.
An early event in the hypersensitive response of tobacco to Pseudomonas syringae pv syringae is the initiation of a K+/H+ response characterized by specific plasma membrane K+ efflux, extracellular alkalinization, and intracellular acidification. We investigated the role of calcium in induction of these host responses. Suspension-cultured tobacco cells exhibited a baseline Ca2+ influx of 0.02 to 0.06 micromole per gram per hour as determined from 45Ca2+ uptake. Following bacterial inoculation, uptake rates began to increase coincidently with onset of the K+/H+ response. Rates increased steadily for 2 to 3 hours, reaching 0.5 to 1 micromole per gram per hour. This increased Ca2+ influx was prevented by EGTA and calcium channel blockers such as La3+, Co2+, and Cd2+ but not by verapamil and nifedipine. Lanthanum, cobalt, cadmium, and EGTA inhibited the K+/H+ response in both suspension-cultured cells and leaf discs and prevented hypersensitive cell death in leaf discs. We conclude that increased plasmalemma Ca2+ influx is required for the K+/H+ and hypersensitive responses in tobacco.  相似文献   

20.
Cell suspension cultures of sugar beet were grown at various salinities (0-200 millimolar NaCl). Their tolerance to Na+ was comparable to that of the intact plant. Tonoplast vesicles were prepared by sucrose density gradient centrifugation of microsomal membranes and shown to be highly purified. The vesicles were subjected to a pH jump in the presence of acridine orange and the rate of recovery of fluorescence after addition of Na+ was used as a measure of Na+-dependent H+ efflux. In the presence of K+ and valinomycin, the Na+/H+ antiport showed saturation kinetics. Increasing Na+ in the growth medium did not change the apparent Km for Na+, but increased Vmax to about twice the control value, suggesting a specific induction of antiport synthesis by salt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号